Statement

thehtml

A square matrix is called pentadiagonal if all the elements out of the main diagonal and of the two diagonals over and under the main diagonal are 0.

For instance, the matrix on the left is pentadiagonal, but, the matrix on the right is not (it would be pentadiagonal if the 9 on the second and the sixth row were 0).

2 ‍ ‍0 ‍ ‍1 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍0     5 ‍ ‍6 ‍ ‍7 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍0
9 ‍ ‍4 ‍ ‍1 ‍ ‍1 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍0     1 ‍ ‍7 ‍ ‍3 ‍ ‍6 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍9 ‍ ‍0 ‍ ‍0
1 ‍ ‍1 ‍ ‍5 ‍ ‍1 ‍ ‍5 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍0     1 ‍ ‍7 ‍ ‍0 ‍ ‍7 ‍ ‍3 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍0
0 ‍ ‍6 ‍ ‍3 ‍ ‍2 ‍ ‍5 ‍ ‍1 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍0     0 ‍ ‍8 ‍ ‍7 ‍ ‍8 ‍ ‍1 ‍ ‍4 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍0
0 ‍ ‍0 ‍ ‍2 ‍ ‍1 ‍ ‍5 ‍ ‍1 ‍ ‍1 ‍ ‍0 ‍ ‍0 ‍ ‍0     0 ‍ ‍0 ‍ ‍8 ‍ ‍2 ‍ ‍1 ‍ ‍4 ‍ ‍1 ‍ ‍0 ‍ ‍0 ‍ ‍0
0 ‍ ‍0 ‍ ‍0 ‍ ‍1 ‍ ‍9 ‍ ‍0 ‍ ‍9 ‍ ‍9 ‍ ‍0 ‍ ‍0     0 ‍ ‍0 ‍ ‍9 ‍ ‍5 ‍ ‍1 ‍ ‍4 ‍ ‍1 ‍ ‍1 ‍ ‍0 ‍ ‍0
0 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍5 ‍ ‍1 ‍ ‍1 ‍ ‍1 ‍ ‍8 ‍ ‍0     0 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍1 ‍ ‍4 ‍ ‍4 ‍ ‍5 ‍ ‍6 ‍ ‍0
0 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍5 ‍ ‍1 ‍ ‍5 ‍ ‍2 ‍ ‍4     0 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍6 ‍ ‍8 ‍ ‍7 ‍ ‍7 ‍ ‍2
0 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍4 ‍ ‍5 ‍ ‍4 ‍ ‍4     0 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍8 ‍ ‍4 ‍ ‍0 ‍ ‍0
0 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍5 ‍ ‍5 ‍ ‍7     0 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍0 ‍ ‍7 ‍ ‍5 ‍ ‍5

Using the definition

Implement the function

that prints whether |mat| is pentadiagonal or it is not.

Also, using the definition

int sum; int max; };

Implement the procedure

that stores in the fields |sum| and |max| of the output parameter |inf| the sum and the maximum of all the |mat| elements, under the precondition that |mat| is pentadiagonal.

The main program is already done; do not modify it. It reads square matrices of integers, and for each one, if the matrix is pentadiagonal, writes the sum and the maximum of its elements; Otherwise, it prints that the matrix is not pentadiagonal.

Precondition

The matrices |mat| are n× n with n≥6.

Public test cases
• Input

```10
2 0 1 0 0 0 0 0 0 0
9 4 1 1 0 0 0 0 0 0
1 1 5 1 5 0 0 0 0 0
0 6 3 2 5 1 0 0 0 0
0 0 2 1 5 1 1 0 0 0
0 0 0 1 9 0 9 9 0 0
0 0 0 0 5 1 1 1 8 0
0 0 0 0 0 5 1 5 2 4
0 0 0 0 0 0 4 5 4 4
0 0 0 0 0 0 0 5 5 7

10
5 6 7 0 0 0 0 0 0 0
1 7 3 6 0 0 0 9 0 0
1 7 0 7 3 0 0 0 0 0
0 8 7 8 1 4 0 0 0 0
0 0 8 2 1 4 1 0 0 0
0 0 9 5 1 4 1 1 0 0
0 0 0 0 1 4 4 5 6 0
0 0 0 0 0 6 8 7 7 2
0 0 0 0 0 0 8 4 0 0
0 0 0 0 0 0 0 7 5 5

6
-1  0  1  0  0  0
0 -1  0  1  0  0
1  0 -1  0  1  0
0  1  0 -1  0  1
0  0  1  0 -1  0
0  0  0  1  0 -1

6
-17 -17 -17   0   0   0
-17 -17 -17 -17   0   0
-17 -17 -17 -17 -17   0
0 -17 -17 -17 -17 -17
0   0 -17 -17 -17 -17
0   0   0 -17 -17 -17
```

Output

```153 9
2 1
-408 0
```
• Information
Author
Professorat de P1
Language
English
Translator
Carlos Molina
Original language
Catalan
Other languages
Catalan
Official solutions
C++
User solutions
C++