# Game of the life (2) P27283

Statement

thehtml

This exercise is a continuation of the exercise ‍

Let M0 be a matrix with bacteria at the initial time, and let M1, M2, M3, …be the matrices at the times 1, 2, 3, …Write a program that, given M0, finds the cycle that is obtained starting at M0, that is, the first and shortest sequence of matrices Mi, Mi+1, …, Mj−1, Mj such that Mj+1 = Mi. Suppose j < 100.

Input

Input consists of the description of the matrix M0: two strictly positive natural numbers n and m, followed by n lines, each one with m characters: ‘B’ if the position has a bacterium, and ‘.’ if the position is empty.

Output

Print the matrices of the cycle Mi, Mi+1, …, Mj−1, Mj separated by an empty line.

Public test cases
• Input

```7 7
....BBB
.B.BBBB
.B.BBBB
..BBBBB
.B.BBBB
.B.BBBB
....BBB
```

Output

```.......
.......
.......
BBB....
.......
.......
.......

.......
.......
.B.....
.B.....
.B.....
.......
.......
```
• Input

```2 2
BB
..
```

Output

```..
..
```
• Input

```10 10
..........
...BBBB...
...B..B...
.BBB..BBB.
.B......B.
.B......B.
.BBB..BBB.
...B..B...
...BBBB...
..........
```

Output

```..........
...BBBB...
...B..B...
.BBB..BBB.
.B......B.
.B......B.
.BBB..BBB.
...B..B...
...BBBB...
..........

....BB....
...BBBB...
..........
.B.B..B.B.
BB......BB
BB......BB
.B.B..B.B.
..........
...BBBB...
....BB....

...B..B...
...B..B...
..BB..BB..
BBB....BBB
..........
..........
BBB....BBB
..BB..BB..
...B..B...
...B..B...
```
• Information
Author