In this problem you must implement several functions in Python.

- Write a function
*absValue(x)*that, given a number, returns its absolute value. - Write a function
*power(x, p)*that, given a number*x*and a natural*p*, returns*x*raised to*p*, that is,*x*^{p}. - Write a function
*isPrime(x)*that, given a natural, returns a Boolean that tells whether it is a prime number or not. - Write a function
*slowFib(n)*that, returns the*n*-th element of the Fibonacci sequence using the recursive algorithm according to its definition (*f*(0)=0,*f*(1)=1,*f*(*n*)=*f*(*n*−1)+*f*(*n*−2) for*n*≥ 2). - Write a function
*quickFib(n)*that, returns the*n*-th element of the Fibonacci sequence using a faster algorithm.

**Scoring**

Each function scores 20 points.

Sample session

>>> absValue(-666) 666 >>> power(2, 3) 8 >>> isPrime(17) True >>> slowFib(5) 5 >>> quickFib(40) 102334155

Information

- Author
- Jordi Petit
- Language
- English
- Translator
- Jordi Petit
- Original language
- Catalan
- Other languages
- Catalan
- Official solutions
- Python
- User solutions
- Python