Graf blau-vermell òptim P71017


Statement
 

pdf   zip

Donat un graf no dirigit, n’heu de pintar cada vèrtex de blau o de vermell. Pintar de blau costa 1, i pintar de vermell costa 2. L’objectiu és minimitzar el cost total de pintar el graf. Només hi ha una restricció: Cada vèrtex només pot tenir, com a màxim, un vèrtex adjacent del mateix color que ell mateix.

Entrada

L’entrada consisteix en diversos casos, cadascun amb el nombre de vèrtexs nn, el nombre d’arestes mm, i les mm arestes xx yy, amb xyx \ne y. Els vèrtexs es numeren a partir de 0. No hi ha arestes repetides. Podeu assumir 1n401 \le n \le 40.

Sortida

Escriviu el cost mínim de pintar cada graf. Si un graf no es pot pintar, escriviu “NO”.

Puntuació

La solució esperada és un backtracking raonablement optimitzat. El jutge us donarà una estimació de la nota màxima que podeu treure (5, 8 o 10) en funció de l’eficiència del vostre codi. En qualsevol cas, tots els últims enviaments s’avaluaran manualment, inclosos els que rebin 0 punts automàtics.

Information
Author
Salvador Roura
Language
Catalan
Official solutions
C++
User solutions
C++