Here we consider sums of polynomials with integer coefficients. For instance, the sum of and is .
We represent the polynomials with vectors of pairs, with the coefficient and the exponent of a monomial, whenever the coefficient is not zero. The vector is sorted in increasing order by the exponents.
For instance, the polynomial corresponds to the vector
| 0 | 1 | 2 | 3 |
| 12 : 0 | 2 : 1 | : 2 | 4 : 3 |
|---|
and the polynomial corresponds to the vector
| 0 | 1 | 2 |
| 666 : 1 | : 79 | 12 : 191 |
|---|
The following declarations allow us to define polynomials as described:
struct Pair {
int coef; // coefficient
int expo; // exponent
};
typedef vector<Pair> Polynomial; // sorted by exponent
Using these definitions, implement the function
Polynomial sum(const Polynomial& p, const Polynomial& q);
that returns the sum of two given polynomials @p@ and @q@.
The main program is already implemented: do not modify it. First, it reads a number . Afterwards, it reads pairs of polynomials, adds them up and prints the result.
#include <iostream>
#include <vector>
using namespace std;
struct Pair {
int coef;
int expo;
};
typedef vector<Pair> Polynomial;
Polynomial sum(const Polynomial& p, const Polynomial& q) {
}
void read(Polynomial& p) {
int n;
cin >> n;
p = Polynomial(n);
char c;
for (int i = 0; i < n; ++i) cin >> p[i].coef >> c >> p[i].expo;
}
void print(const Polynomial& p) {
int n = p.size();
cout << n;
for (int i = 0; i < n; ++i) cout << " " << p[i].coef << ":" << p[i].expo;
cout << endl;
}
int main() {
int t;
cin >> t;
for (int i = 0; i < t; ++i) {
Polynomial p, q;
read(p);
read(q);
Polynomial r = sum(p, q);
print(r);
}
}
Input
10 4 12:0 2:1 -15:2 4:3 4 -1:0 -3:1 15:2 -2:4 4 3:1 8:4 -3:7 5:8 4 3:1 8:4 -3:7 5:8 3 4:0 8:5 6:6 2 3:0 -6:6 2 3:0 -6:6 3 4:0 8:5 6:6 3 2:3 3:18 5:21 3 2:3 -3:18 -5:21 1 1:1000000000 1 1000000000:1 0 0 1 999:666 0 0 1 999:666 1 -999:666 1 999:666
Output
4 11:0 -1:1 4:3 -2:4 4 6:1 16:4 -6:7 10:8 2 7:0 8:5 2 7:0 8:5 1 4:3 2 1000000000:1 1:1000000000 0 1 999:666 1 999:666 0