Horner scheme P50036


Statement
 

pdf   zip   main.cc

Let p[0n]p[0\dots n] be a vector of integer numbers that contains the coefficients of a polynomial of degree n0n\ge0. For instance, the vector p=3,2,5,1p=\langle3,2,5,-1\rangle represents p(x)=3+2x+5x2x3p(x)=3+2x+5x^2-x^3, a polynomial of degree n=3n=3.

Write a function

    int evaluate(const vector<int>& p, int x);

that evaluates the polynomial at the point @x@, that is, that returns i=0np[i]xi\sum_{i=0}^n p[i]x^i.

Use the Horner scheme: pnxn+pn1xn1++p0=((pnx+pn1)x+)x+p0.p_nx^n+p_{n-1}x^{n-1}+\dots+p_0=((p_nx+p_{n-1})x+\dots)x+p_0.

Observation

You only need to submit the required procedure; your main program will be ignored.

Information
Author
Jordi Petit
Language
English
Translator
Carlos Molina
Original language
Catalan
Other languages
Catalan
Official solutions
C++
User solutions
C++