
Jutge.org
The Virtual Learning Environment for Computer Programming

Doble cua (deque) implementada amb una llista doblement enca-
denada i circular X96884_ca

La classe doble cua (en anglès double-ended queue o abreviadament deque) és una classe
que permet fer insercions, supressions i consultes en els dos extrems de la cua. És a dir, ha
de disposar de les següents operacions (mira el PDF de l’enunciat):

Donada la classe 𝑑𝑒𝑞𝑢𝑒 que permet guardar elements en una doble cua implementada amb
una llista doblement encadenada, sense fantasma i circular, cal implementar els mètodes:

void push(T e);
// Pre: True
// Post: Insereix un element al davant de la deque.

void inject (T e);
// Pre: True
// Post: Insereix un element al darrera de la deque.

void pop();
// Pre: La deque no és buida.
// Post: Elimina el primer element de la deque.

void eject ();
// Pre: La deque no és buida.
// Post: Elimina l’últim element de la deque.

Pots veure exemples de cada mètode en els jocs de prova públics. Cal enviar a jutge.org
la següent especificació de la classe 𝑑𝑒𝑞𝑢𝑒 i la implementació dels quatre mètodes anteriors
dins del mateix fitxer (la resta de mètodes públics ja estan implementats en el fitxer 𝑚𝑎𝑖𝑛.𝑐𝑐).
Indica dins d’un comentari a la capçalera de cada mètode el seu cost en funció del nombre
d’elements 𝑛 de la deque.
#include <cstddef>



using namespace std;
typedef unsigned int nat;

template <typename T>
class deque {
public:
deque();
// Pre: True
// Post: El p.i. és una deque buida.

deque(const deque &dq);
// Pre: True
// Post: El p.i. conté una còpia de dq.

~deque();
// Post: Destrueix els elements del p.i.

nat size () const;
// Pre: True
// Post: Retorna el nombre d’elements de la deque.

bool empty() const;
// Pre: True
// Post: Retorna true si la deque és buida; false en cas contrari.

T front() const;
// Pre: La deque no és buida.
// Post: Retorna el primer element de la deque.

T rear() const;
// Pre: La deque no és buida.
// Post: Retorna l’últim element de la deque.

void push(T e);
// Pre: True
// Post: Insereix un element al davant de la deque.

void inject (T e);
// Pre: True
// Post: Insereix un element al darrera de la deque.

void pop();
// Pre: La deque no és buida.
// Post: Elimina el primer element de la deque.

void eject ();
// Pre: La deque no és buida.
// Post: Elimina l’últim element de la deque.



private:
/∗ Double−ended queue implementada amb una llista doblement encadenada,

sense fantasma i circular . ∗/
struct node {
T info ; // Informació del node
node ∗seg ; // Punter al següent element
node ∗ant; // Punter a l’anterior element

};
node ∗_prim; // Punter al primer element
nat _long ; // Nombre d’elements

// Aquí va l’especificació dels mètodes privats addicionals
};

// Aquí va la implementació dels mètodes públics i privats addicionals
Degut a que jutge.org només permet l’enviament d’un fitxer amb la solució del problema, en
el mateix fitxer hi ha d’haver l’especificació de la classe i la implementació dels mètodes que
falten (el que normalment estarien separats en els fitxers .ℎ𝑝𝑝 i .𝑐𝑝𝑝).
Per testejar la solució, jutge.org ja té implementats la resta de mètodes de la classe 𝑑𝑒𝑞𝑢𝑒 i
un programa principal que crea una deque d’enters i processa comandes que executen els
diferents mètodes de la classe.

Entrada
L’entrada conté vàries comandes, una per línea, amb el següent format (e és un enter):

• size

• empty

• front

• rear

• push e

• inject e

• pop

• eject

• mostra

• mostra_invertida

Sortida
Per a cada línia d’entrada, escriu una línia amb la comanda d’entrada, el separador ”: ” i el
resultat de la comanda.
El resultat de les comandes 𝑝𝑢𝑠ℎ i 𝑖𝑛𝑗𝑒𝑐𝑡 és el mateix element inserit, el resultat de les coman-
des 𝑝𝑜𝑝 i 𝑒𝑗𝑒𝑐𝑡 és l’element que s’eliminarà. La comanda𝑚𝑜𝑠𝑡𝑟𝑎 envia tots els elements al canal
de sortida entre claudàtors i separats per espais. La comanda 𝑚𝑜𝑠𝑡𝑟𝑎_𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑑𝑎 és similar a
𝑚𝑜𝑠𝑡𝑟𝑎 però els envia al revés, començant amb el darrer i acabant amb el primer.



Observació
Només cal enviar la classe requerida i la implementació delsmètodes que falten. Pots ampliar
la classe amb mètodes privats. Segueix estrictament la definició de la classe de l’enunciat.
Les comandes𝑚𝑜𝑠𝑡𝑟𝑎 i𝑚𝑜𝑠𝑡𝑟𝑎_𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑑𝑎 criden alsmètodes 𝑝𝑜𝑝 i 𝑒𝑗𝑒𝑐𝑡 respectivament. Fins que
aquests mètodes no estiguin ben implementats, no es mostraran correctament els elements
de la deque per pantalla.
Indica dins d’un comentari a la capçalera de cada mètode el seu cost en funció del nombre
d’elements 𝑛 de la deque.

Exemple d’entrada 1
mostra
mostra_invertida
empty
size
push 7
push 5
push 9
empty
size
front
rear
mostra
mostra_invertida

Exemple de sortida 1
mostra: []
mostra_invertida: []
empty: true
size: 0
push 7: 7
push 5: 5
push 9: 9
empty: false
size: 3
front: 9
rear: 7
mostra: [9 5 7]
mostra_invertida: [7 5 9]

Exemple d’entrada 2
inject 6
inject 4
inject 8
empty
size
front
rear
mostra
mostra_invertida

Exemple de sortida 2
inject 6: 6
inject 4: 4
inject 8: 8
empty: false
size: 3
front: 6
rear: 8
mostra: [6 4 8]
mostra_invertida: [8 4 6]

Exemple d’entrada 3
push 7
push 5
push 9
pop
pop
empty
size
front
rear
mostra
mostra_invertida

Exemple de sortida 3
push 7: 7
push 5: 5
push 9: 9
pop: 9
pop: 5
empty: false
size: 1
front: 7
rear: 7
mostra: [7]
mostra_invertida: [7]

Exemple d’entrada 4
inject 6
inject 4
inject 8
eject
eject

empty
size
front
rear
mostra
mostra_invertida



Exemple de sortida 4
inject 6: 6
inject 4: 4
inject 8: 8
eject: 8
eject: 4

empty: false
size: 1
front: 6
rear: 6
mostra: [6]
mostra_invertida: [6]

Exemple d’entrada 5
push 7
push 5
push 9
pop
eject
inject 6
inject 4
inject 8
eject
pop
empty
size
front
rear
mostra
mostra_invertida

Exemple de sortida 5
push 7: 7
push 5: 5
push 9: 9
pop: 9
eject: 7
inject 6: 6
inject 4: 4
inject 8: 8
eject: 8
pop: 5
empty: false
size: 2
front: 6
rear: 4
mostra: [6 4]
mostra_invertida: [4 6]

Exemple d’entrada 6
push 7
push 5
push 9
eject
pop
inject 6
inject 4
inject 8
pop
eject
pop
eject
empty
size
mostra
mostra_invertida

Exemple de sortida 6
push 7: 7
push 5: 5
push 9: 9
eject: 7
pop: 9
inject 6: 6
inject 4: 4
inject 8: 8
pop: 5
eject: 8
pop: 6
eject: 4
empty: true
size: 0
mostra: []
mostra_invertida: []

Informació del problema
Autoria: Jordi Esteve

Generació: 2026-01-25T17:33:48.928Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

