Jutge.org

The Virtual Learning Environment for Computer Programming

Partici6 amb un diccionari BST. Cercar el representant del bloc al
que pertany una clau. X96496_ca

Donada la classe mf set que permet gestionar particions (MFSets) on només hi guardem claus
uniques usant arbres binaris de cerca (BST), cal implementar el metode

// Pre: cert

// Post: Si k hi és, retorna un punter al node representant del bloc al que pertany k.
// Sikno hi és, retorna nullptr.

nodex find_aux(const Clau &k) const;

Les claus sén del tipus Clau que admet una relacié d’ordre total, és a dir, tenim una op-
eracié de comparacié < entre claus. Les claus que pertanyen a un mateix bloc de la particié
tenen el mateix representant encara que no necessariament el node que conté la clau apunta
directament al seu representant (punter _pare_mfset), ja que el metode merge, que ja esta
implementat, utilitza 1'estratégia Quick-union.

Cal enviar a jutge.org la segiient especificacié de la classe mf set i la implementaci6 del métode
dins del mateix fitxer. La resta de metodes publics i privats ja estan implementats.

#include <iostream>
using namespace std;
typedef unsigned int nat;

template <typename Clau>

class mfset {
// Partici6 on les operacions find i merge s’han implementat amb l'estrategia
// Quick-union. Les claus de la partici6 es guarden en un BST.

public:
// Constructora per defecte. Crea una particié buida.

mfset ();

// Destructora

~mfset ();

// Pre: cert

// Post: Insereix la clau k en la particié posant-la en un nou bloc.
// Sija hi era, no fa res.

void insereix (const Clau &k);

// Pre: cert

// Post: Fusiona els blocs de les claus k1 i k2 amb l'estratégia Quick-union.
// Sikl o k2 no hi és, no fa res.

void merge(const Clau &k1, const Clau &k2);

// Pre: cert
// Post: Si k hi és, retorna true i la clau del representant del bloc al que pertany k.

// Sik no hi és, retorna false i la clau k.
pair <bool, Clau> find(const Clau &k) const;

private:

struct node {
Clau _k; // Clau
nodex _esq; // fill esquerre del BST
nodex _dret; // fill dret del BST
nodex _pare_mfset; // pare de la partici6, apunta a nullptr si és el representant del

bloc

node(const Clau &k, nodex esq = nullptr, nodex dret = nullptr);

%

node = _arrel ; // punter a l'arrel del BST

static void esborra_nodes (nodex m);
static nodex insereix_bst (node *n, const Clau &k);

// Pre: cert

// Post: Si k hi és, retorna un punter al node representant del bloc al que pertany k.
// Si k no hi és, retorna nullptr.

nodex find_aux(const Clau &k) const;

// Aqui va 'especificacié dels metodes privats addicionals

};

// Aqui va la implementacié del métode find_aux i dels métodes privats addicionals

Degut a que jutge.org només permet I'enviament d’un fitxer amb la solucié del problema,
en el mateix fitxer hi ha d’haver 1’especificaci6 de la classe i la implementacié del meétode
find_aux (el que normalment estarien separats en els fitxers .hpp i .cpp).

Per testejar la classe disposes d"un programa principal que processa fragments que contenen
una particié amb claus enteres seguit de comandes per fer fusions de blocs (merge) i cercar
representant d"un bloc (find).

Entrada

L'entrada conté varis fragments separats per linies amb 10 guions (). Cada fragment
consisteix en una linia que conté una seqiiéncies d’enters, sén els elements que tindra origi-
nalment la particié. A continuacié segueixen varies comandes, una per linea, amb el segiient
format, on k, k1 i k2 sén claus enteres:

e findk
o merge k1 k2

Sortida

Per a cada linia d’entrada, escriu una linia amb el resultat:

e Si la linia conté els elements inicials de la partici6, mostra el nombre de claus de la
particié un cop inserit tots els seus elements.

e Si la linia és una comanda, mostra la comanda, el separador ”: ” i el resultat. Si la
comanda és un merge no es mostra res més. Si la comanda és un find es mostra el
representant del bloc de la clau donada si existeix.

e Silalinia és el separador de blocs format per 10 guions, mostra els mateixos 10 guions.

Observacio

Només cal enviar la classe requerida i la implementaci6é del metode find_aux. Pots ampliar
la classe amb metodes privats. Segueix estrictament la definici6 de la classe de I’enunciat.
El metode find_aux almenys ha de tenir cost logaritmic (en el cas mig) per superar els jocs

de prova privats.

Exemple d’entrada 1

Exemple de sortida 1

0
find 3 find 3:
merge 2 3 merge 2 3:
find 3 find 3:

Exemple d’entrada 2

Exemple de sortida 2

5 1

find 5 find 5: 5
find 6 find 6:
merge 5 5 merge 5 5:
find 5 find 5: 5

Exemple d’entrada 3

Exemple de sortida 3

7 5 2
find 5 find 5: 5
find 6 find 6:
find 7 find 7: 7
merge 6 7 merge 6 7:
find 5 find 5: 5
find 6 find 6:
find 7 find 7: 7
merge 5 7 merge 5 7:
find 5 find 5: 7
find 6 find 6:
find 7 find 7: 7
Exemple d’entrada 4 find -5

find -2
-53-21-776%© merge -5 -7
find -7 find -7
find -5 find -5
find -2 find -2
merge -5 -2 find 1
find -7 find 6
find -5 merge 6 1
find -2 find 1
merge -2 =7 find 6
find -7

merge 1 -5

find -7

find -5
find -2

find 1

find 6
merge 7 3
merge -2 7
find -7
find -5
find -2

find
find
find
find

Informacié del problema

Autoria: Jordi Esteve

Generacio: 2026-01-25T17:32:01.6937

© Jutge.org, 2006—-2026.
https://jutge.org

Exemple de sortida 4

7
find -7: -7
find -5: -5
find -2: -2
merge -5 -2:
find -7: =7
find -5: -2
find -2: -2
merge -2 -7:
find -7: =7
find -5: -7
find -2: -7
merge -5 -7:
find -7: -7
find -5: -7
find -2: -7
find 1: 1
find 6: 6
merge 6 1:
find 1: 1
find 6: 1
merge 1 -5:
find -7: =7
find -5: -7
find -2: -7
find 1: -7
find 6: -7

w w w w

https://jutge.org

