
Jutge.org
The Virtual Learning Environment for Computer Programming

Partició amb un diccionari BST. Cercar el representant del bloc al
que pertany una clau. X96496_ca

Donada la classe𝑚𝑓 𝑠𝑒𝑡 que permet gestionar particions (MFSets) on només hi guardem claus
úniques usant arbres binaris de cerca (BST), cal implementar el mètode
// Pre: cert
// Post: Si k hi és, retorna un punter al node representant del bloc al que pertany k.
// Si k no hi és, retorna nullptr.
node∗ find_aux(const Clau &k) const;

Les claus són del tipus 𝐶𝑙𝑎𝑢 que admet una relació d’ordre total, és a dir, tenim una op-
eració de comparació < entre claus. Les claus que pertanyen a un mateix bloc de la partició
tenen el mateix representant encara que no necessàriament el node que conté la clau apunta
directament al seu representant (punter _𝑝𝑎𝑟𝑒_𝑚𝑓 𝑠𝑒𝑡), ja que el mètode 𝑚𝑒𝑟𝑔𝑒, que ja està
implementat, utilitza l’estratègia Quick-union.
Cal enviar a jutge.org la següent especificació de la classe𝑚𝑓 𝑠𝑒𝑡 i la implementació delmètode
dins del mateix fitxer. La resta de mètodes públics i privats ja estan implementats.
#include <iostream>
using namespace std;
typedef unsigned int nat;

template <typename Clau>
class mfset {
// Partició on les operacions find i merge s’han implementat amb l’estratègia
// Quick-union. Les claus de la partició es guarden en un BST.

public:
// Constructora per defecte. Crea una partició buida.
mfset();

// Destructora
~mfset();

// Pre: cert
// Post: Insereix la clau k en la partició posant-la en un nou bloc.
// Si ja hi era, no fa res.
void insereix (const Clau &k);

// Pre: cert
// Post: Fusiona els blocs de les claus k1 i k2 amb l’estratègia Quick-union.
// Si k1 o k2 no hi és, no fa res.
void merge(const Clau &k1, const Clau &k2);

// Pre: cert
// Post: Si k hi és, retorna true i la clau del representant del bloc al que pertany k.



// Si k no hi és, retorna false i la clau k.
pair<bool, Clau> find(const Clau &k) const;

private:
struct node {
Clau _k ; // Clau
node∗ _esq ; // fill esquerre del BST
node∗ _dret ; // fill dret del BST
node∗ _pare_mfset ; // pare de la partició, apunta a nullptr si és el representant del

bloc
node(const Clau &k, node∗ esq = nullptr , node∗ dret = nullptr );

};
node ∗_arrel ; // punter a l’arrel del BST

static void esborra_nodes(node∗ m);
static node∗ insereix_bst (node ∗n, const Clau &k);

// Pre: cert
// Post: Si k hi és, retorna un punter al node representant del bloc al que pertany k.
// Si k no hi és, retorna nullptr.
node∗ find_aux(const Clau &k) const;

// Aquí va l’especificació dels mètodes privats addicionals

};

// Aquí va la implementació del mètode find_aux i dels mètodes privats addicionals

Degut a que jutge.org només permet l’enviament d’un fitxer amb la solució del problema,
en el mateix fitxer hi ha d’haver l’especificació de la classe i la implementació del mètode
𝑓 𝑖𝑛𝑑_𝑎𝑢𝑥 (el que normalment estarien separats en els fitxers .ℎ𝑝𝑝 i .𝑐𝑝𝑝).
Per testejar la classe disposes d’un programa principal que processa fragments que contenen
una partició amb claus enteres seguit de comandes per fer fusions de blocs (merge) i cercar
representant d’un bloc (find).

Entrada
L’entrada conté varis fragments separats per línies amb 10 guions (———–). Cada fragment
consisteix en una línia que conté una seqüències d’enters, són els elements que tindrà origi-
nalment la partició. A continuació segueixen vàries comandes, una per línea, amb el següent
format, on 𝑘, 𝑘1 i 𝑘2 són claus enteres:

• 𝑓 𝑖𝑛𝑑 𝑘

• 𝑚𝑒𝑟𝑔𝑒 𝑘1 𝑘2

Sortida
Per a cada línia d’entrada, escriu una línia amb el resultat:



• Si la línia conté els elements inicials de la partició, mostra el nombre de claus de la
partició un cop inserit tots els seus elements.

• Si la línia és una comanda, mostra la comanda, el separador ”: ” i el resultat. Si la
comanda és un 𝑚𝑒𝑟𝑔𝑒 no es mostra res més. Si la comanda és un 𝑓 𝑖𝑛𝑑 es mostra el
representant del bloc de la clau donada si existeix.

• Si la línia és el separador de blocs format per 10 guions, mostra els mateixos 10 guions.

Observació
Només cal enviar la classe requerida i la implementació del mètode 𝑓 𝑖𝑛𝑑_𝑎𝑢𝑥. Pots ampliar
la classe amb mètodes privats. Segueix estrictament la definició de la classe de l’enunciat.
El mètode 𝑓 𝑖𝑛𝑑_𝑎𝑢𝑥 almenys ha de tenir cost logarítmic (en el cas mig) per superar els jocs
de prova privats.

Exemple d’entrada 1

find 3
merge 2 3
find 3

Exemple de sortida 1
0
find 3:
merge 2 3:
find 3:

Exemple d’entrada 2
5
find 5
find 6
merge 5 5
find 5

Exemple de sortida 2
1
find 5: 5
find 6:
merge 5 5:
find 5: 5

Exemple d’entrada 3
7 5
find 5
find 6
find 7
merge 6 7
find 5
find 6
find 7
merge 5 7
find 5
find 6
find 7

Exemple de sortida 3
2
find 5: 5
find 6:
find 7: 7
merge 6 7:
find 5: 5
find 6:
find 7: 7
merge 5 7:
find 5: 7
find 6:
find 7: 7

Exemple d’entrada 4
-5 3 -2 1 -7 7 6
find -7
find -5
find -2
merge -5 -2
find -7
find -5
find -2
merge -2 -7
find -7

find -5
find -2
merge -5 -7
find -7
find -5
find -2
find 1
find 6
merge 6 1
find 1
find 6
merge 1 -5



find -7
find -5
find -2
find 1
find 6
merge 7 3
merge -2 7
find -7
find -5
find -2
find 1
find 3
find 6
find 7

Exemple de sortida 4
7
find -7: -7
find -5: -5
find -2: -2
merge -5 -2:
find -7: -7
find -5: -2
find -2: -2
merge -2 -7:
find -7: -7
find -5: -7
find -2: -7
merge -5 -7:
find -7: -7
find -5: -7
find -2: -7
find 1: 1
find 6: 6
merge 6 1:
find 1: 1
find 6: 1
merge 1 -5:
find -7: -7
find -5: -7
find -2: -7
find 1: -7
find 6: -7
merge 7 3:
merge -2 7:
find -7: 3
find -5: 3
find -2: 3
find 1: 3
find 3: 3
find 6: 3
find 7: 3

Informació del problema
Autoria: Jordi Esteve

Generació: 2026-01-25T17:32:01.693Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

