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(BinaryTrees) Reemplaca Os per suma per sobre a profunditat parell
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Implementeu una funci6 RECURSIVA que, donat un arbre binari de naturals, retorna unnou
arbre que és identic a I'inicial, excepte que cada 0 s’ha reemplacat per la suma dels elements
a profunditat parell que apareixen per sobre d’aquest 0 (en l'arbre original), és a dir, les
posiciéns a profunditat parell que s6n antecessores d’aquest 0.

Sobreentenem que l’arrel de I’arbre esta a profunditat 0, els nodes directes des de ’arrel sén
a profunditat 1, els nodes a distancia dos de I’arrel sén a profunditat 2, i aixi successivament.
Aquesta és la capcelera:

// Pre: Sigui T el valor inicial de 1l'arbre t que es rep com a parametre.

// Els valors guardats a T son majors o iguals a O.

// Post: Sigui T' 1'arbre retornat. T i T' tenen exactament la mateixa estructu
// A més a més, per a cada posicidé p de T', si T té un valor x diferent d
// llavors T' també té x a posicid p.

// En canvi, si T té valor 0 a posicidé p, llavors el valor de T' a posici
// la suma de tots els valors de T a profunditat parell per sobre de p.

BinaryTree<int> replaceOsWithAboveSumDepthEven (BinaryTree<int> t);

Aqui tenim un exemple de comportament de la funcié:

replaceOsWithAboveSumDepthEven (3(0(2,8(0,)),1(6(0,8),8(8,4)))) = 3(3(2,8(11,)),
3 => 3
| |
| | | |
0 1 3 1
| | | |
| | | | | | |
2 8 6 38 2 8 6
| | | | |
| | | | | | | | |
0 0 8 38 4 11 9 8 3

Fixeu-vos que l'enunciat d’aquest exercici ja ofereix uns fitxers que haureu d’utilitzar per a

compilar: Makefile, program.cpp, BinaryTree.hpp, replaceOsWithAboveSumDepthEven.hpy
Només cal que creeu replace0sWithAboveSumDepthEven. cpp, posant-hi els includes

que calguin i implementant la funcié replaceOsWithAboveSumDepthEven. I quan pugeu

la vostra soluci6 al jutge, només cal que pugeu un tar construit aixi:

tar cf solution.tar replaceOsWithAboveSumDepthEven.cpp



Entrada

La primera linia de 'entrada descriu el format en el que es descriuen els arbres, o bé IN-
LINEFORMAT o bé VISUALFORMAT. Després venen un nombre arbitrari de casos. Cada
cas consisteix en una descripcié d’un arbre un arbre binari de naturals. Fixeu-vos en que el
programa que us oferim ja s’encarrega de llegir aquestes entrades. Només cal que imple-
menteu la funcié abans esmentada.

Sortida

Per a cada cas, cal escriure I’arbre binari resultant de cridar a la funcié abans esmentada
amb l’arbre d’entrada. Fixeu-vos en que el programa que us oferim ja s’encarrega d’escriure
aquesta sortida. Només cal que implementeu la funcié abans esmentada.

Exemple d’entrada 1
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Exemple d’entrada 2

VISUALFORMAT
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Exemple de sortida 1

1(z2(6(,6),),8(1(,9(2,4)),8(1,9(,9))))
2(6(7(3(,5),1(,3)),),8)
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Observaci6

La vostra funci6 i subfuncions que creeu han de treballar només amb arbres. Heu de tro-
bar una soluci6 RECURSIVA del problema. En les crides recursives, incloeu la hipotesi
d’inducci6, és a dir una explicacié del que es cumpleix després de la crida, i també la funcié
de fita/decreixement o una justificacié de perque la funci6 recursiva acaba.

Una solucié6 directa superara els jocs de proves publics i us permetra obtenir una nota raon-
able. Pero molt possiblement sera lenta, i necessitareu crear alguna funcié recursiva auxiliar
per a produir una solucié més eficient capag de superar tots els jocs de proves.

Avaluaci6 sobre 10 punts:

e Soluci6 lenta: 6 punts.

e Soluci6 lenta + justificacié: 8 punts.

e solucié6 rapida: 8 punts.

e soluci6 rapida + justificacio: 10 punts.

Entenem com a soluci6 lenta una que és correcta i capag de superar els jocs de proves publics.
Entenem com a solucié rapida una que és correcta i capag de superar els jocs de proves ptblics
i privats. La justificaci6 val 2 punts i consisteix en definir correctament les PRE/POST de les
funcions auxiliars que afegiu i en definir correctament les hipotesis d’inducci6 i funcions de
fita.
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