Jutge.org

The Virtual Learning Environment for Computer Programming

(BinaryTrees) Reemplaca Os per suma per sobre a profunditat parell
X93188 ca

Implementeu una funci6 RECURSIVA que, donat un arbre binari de naturals, retorna unnou
arbre que és identic a I'inicial, excepte que cada 0 s’ha reemplacat per la suma dels elements
a profunditat parell que apareixen per sobre d’aquest 0 (en l'arbre original), és a dir, les
posiciéns a profunditat parell que s6n antecessores d’aquest 0.

Sobreentenem que l’arrel de I’arbre esta a profunditat 0, els nodes directes des de ’arrel sén
a profunditat 1, els nodes a distancia dos de I’arrel sén a profunditat 2, i aixi successivament.
Aquesta és la capcelera:

// Pre: Sigui T el valor inicial de 1l'arbre t que es rep com a parametre.

// Els valors guardats a T son majors o iguals a O.

// Post: Sigui T' 1'arbre retornat. T i T' tenen exactament la mateixa estructu
// A més a més, per a cada posicidé p de T', si T té un valor x diferent d
// llavors T' també té x a posicid p.

// En canvi, si T té valor 0 a posicidé p, llavors el valor de T' a posici
// la suma de tots els valors de T a profunditat parell per sobre de p.

BinaryTree<int> replaceOsWithAboveSumDepthEven (BinaryTree<int> t);

Aqui tenim un exemple de comportament de la funcié:

replaceOsWithAboveSumDepthEven (3(0(2,8(0,)),1(6(0,8),8(8,4)))) = 3(3(2,8(11,)),
3 => 3
| |
| | | |
0 1 3 1
| | | |
| | | | | | |
2 8 6 38 2 8 6
| | | | |
| | | | | | | | |
0 0 8 38 4 11 9 8 3

Fixeu-vos que l'enunciat d’aquest exercici ja ofereix uns fitxers que haureu d’utilitzar per a

compilar: Makefile, program.cpp, BinaryTree.hpp, replaceOsWithAboveSumDepthEven.hpy
Només cal que creeu replace0sWithAboveSumDepthEven. cpp, posant-hi els includes

que calguin i implementant la funcié replaceOsWithAboveSumDepthEven. I quan pugeu

la vostra soluci6 al jutge, només cal que pugeu un tar construit aixi:

tar cf solution.tar replaceOsWithAboveSumDepthEven.cpp

Entrada

La primera linia de 'entrada descriu el format en el que es descriuen els arbres, o bé IN-
LINEFORMAT o bé VISUALFORMAT. Després venen un nombre arbitrari de casos. Cada
cas consisteix en una descripcié d’un arbre un arbre binari de naturals. Fixeu-vos en que el
programa que us oferim ja s’encarrega de llegir aquestes entrades. Només cal que imple-
menteu la funcié abans esmentada.

Sortida

Per a cada cas, cal escriure I’arbre binari resultant de cridar a la funcié abans esmentada
amb l’arbre d’entrada. Fixeu-vos en que el programa que us oferim ja s’encarrega d’escriure
aquesta sortida. Només cal que implementeu la funcié abans esmentada.

Exemple d’entrada 1

INLINEFORMAT
1(2(6(,6),),8(0(,9(2,4)),8
6(7(3(,5),1(3)),),8)
0(2,)),3(2,3(,0)))
+4(4,7)))
5(,6),5),0(6(,5),
0
(3(,4
0(1,
)), (6,
((7(0), /
3,),9(,0(2)
5(5,),3()) 0
9,4(0,3)),7)

)
)
)

)
3)
)
0(0,0))))
9)))
)

»0(1,)),)
9(0(8,8),),4(0,8¢(,

4 7(3(6,7),0))
2,8(0,)),1(6(0,8),8(8,
1

9

5

—~ O =

6))),8(4,
4)))
1 2(8,6(2,7(3,))))
(8(1(5,),1),2))
(3(0,8),5))

1

Exemple d’entrada 2

VISUALFORMAT

(1,0(

9(5,0))),

0))))

0)

+0),5(4(,6(2,)),7(0(7,)
)

3))

Exemple de sortida 1

1(z2(6(,6),),8(1(,9(2,4)),8(1,9(,9))))
2(6(7(3(,5),1(,3)),),8)
0(9(,0(2,)),3(2,3(,3)))
2(2,1(,44,7)))
3(3(1(5(,6),5),3(6(,5),9(5,3))),3)
9(4,90,9(,9)))
6(4(3(7(,2),3(,4)),6),5(4(,6(2,)),7(13(7
0(D(74848),0(1,3)),)
0(0(,0(,3)),4(6,))
0(,5(,8(7(,8),8(8,8))))
5(8(3,),9(,5(2,9)))
9(6(5(5,),3(,12)),9)
0(0(9,4(4,3)),7)
1(3(,1(1,)),)
6(1(9(15(8,8),),4(10,8¢(,6))),8(4,3))
0(0(4,9),7(3(6,7),0))
3(3(2,8(11,)),1(6(9,8),8(8,4)))
1(4(1,3),2(8,6(2,7(3,))))
9(2,9(8(1(5,),1),2))
9(9,5(3(12,8),5))
2
\
| \
6 8
|
|
7
|
| |
3 1
| |
| \
5 3

0)

13(13,

))))

8

|
|
6
|

|

5

|
0
|

|

0

|
|
4
|

|

0

1

4 4
\
| \
0 8
\
|
6
0
\
|
7
|
| |
3 0
|
| |
6 7
3
|
|
1
|
| |
6 8
| |
| | \
0 8 8
1
\
|
2
|
| |
8 6
|
| |
2 7

2 9
|
|
8
|
| |
1 1
|
9
|
|
5
|
| |
3 5
|
|
8

Exemple de sortida 2

1
|
| |
2 8
| |
| |
6 1
| |
| | \
6 9 1
|
| |
2 4
2
\
| \
6 8
|
|
7
|
| |
3 1
| |
| \
5 3
0
\
| |
9 3
| |
| |
0 2
|
|
2
2
|
| |
2 1

13

13

13

! ! 4 9 3 0
5 3 |
! I
- - | |
! 6 7
12
3
0
| ____________________
77777777 ! !
| | 3 1
0 7 | |
| 7777777777777777777777
———————— ! ! ! |
| 2 8 6 8
4 ! ! |
| —_———— e e — e e
———————— ! | !
| | 11 9 8 8
4 3
1
1 |
| ______________
- ! |
4 2
! |
- ! ! | |
| 1 3 8 6
1 |
| 77777777
e | !
2 7
|
6
\ 3
! | 9
1 8 |
! I
———————————————— ! !
! ! | | 2 9
9 4 4 3 |
! I
e ! |
! ! | 8 2
15 10 8 |
! T
———————— e ! !
! | 1 1
8 6 |
0 !
| 5
! | 9
0 7 !
! I
7777777777777777 ! !
9 5

Observaci6

La vostra funci6 i subfuncions que creeu han de treballar només amb arbres. Heu de tro-
bar una soluci6 RECURSIVA del problema. En les crides recursives, incloeu la hipotesi
d’inducci6, és a dir una explicacié del que es cumpleix després de la crida, i també la funcié
de fita/decreixement o una justificacié de perque la funci6 recursiva acaba.

Una solucié6 directa superara els jocs de proves publics i us permetra obtenir una nota raon-
able. Pero molt possiblement sera lenta, i necessitareu crear alguna funcié recursiva auxiliar
per a produir una solucié més eficient capag de superar tots els jocs de proves.

Avaluaci6 sobre 10 punts:

e Soluci6 lenta: 6 punts.

e Soluci6 lenta + justificacié: 8 punts.

e solucié6 rapida: 8 punts.

e soluci6 rapida + justificacio: 10 punts.

Entenem com a soluci6 lenta una que és correcta i capag de superar els jocs de proves publics.
Entenem com a solucié rapida una que és correcta i capag de superar els jocs de proves ptblics
i privats. La justificaci6 val 2 punts i consisteix en definir correctament les PRE/POST de les
funcions auxiliars que afegiu i en definir correctament les hipotesis d’inducci6 i funcions de
fita.

Informacié del problema
Autoria: PRO1
Generacio: 2026-01-25T21:33:47.856Z

© Jutge.org, 2006-2026.
https://jutge.org

https://jutge.org

