
579 - Clock Hands**X91615_en**

The history of clocks is fascinating, but unrelated to this problem. In this problem, you are asked to find the angle between the minute hand and the hour hand on a regular analog clock. Assume that the second hand, if there were one, would be pointing straight up at the 12. Give all angles as the smallest positive angles. For example 9:00 is 90 degrees; not -90 or 270 degrees.

Input

The input is a list of times in the form 'H:M', each on their own line, with $1 \leq H \leq 12$ and $00 \leq M \leq 59$. The input is terminated with the time '0:00'. Note that H may be represented with 1 or 2 digits (for 1–9 or 10–12, respectively); M is always represented with 2 digits (the input times are what you typically see on a digital clock).

Output

The output displays the smallest positive angle in degrees between the hands for each time. The answer should be between 0 degrees and 180 degrees for all input times. Display each angle on a line by itself in the same order as the input. The output should be rounded to the nearest $1/1000$, i.e., three places after the decimal point should be printed.

Sample input 1

12:00
9:00
8:10
0:00

Sample output 1

0.000
90.000
175.000

Problem information

Author: Carlos de Salles

Generation: 2026-01-25T22:53:33.045Z