
Jutge.org
The Virtual Learning Environment for Computer Programming

Graf dirigit amb llistes d’adjacència. Quantes arestes diferents es
poden visitar des de cada vèrtex X90876_ca

Donada la classe 𝑔𝑟𝑎𝑓 que permet gestionar grafs dirigits i no etiquetats amb 𝑛 vèrtexs (els
vèrtexs són enters dins l’interval [0, 𝑛 − 1]), cal implementar el mètode

vector<nat> quantes_arestes_es_visiten () const;
// Pre: Cert
// Post: Retorna quantes arestes diferents es poden visitar (hi ha un camí)
// des de cada vèrtex del graf.

Les arestes es guarden en llistes d’adjacència: un vector de 𝑛 elements que conté llistes sim-
plement encadenades amb els successors de cadascun dels 𝑛 vèrtexs. Un dels jocs de prova
públics és aquest graf que conté 5 vèrtexs (mira el PDF de l’enunciat):
les seves arestes estarien guardades en un vector amb 5 llistes d’adjacència, cada llista conté
els successors de cadascun dels 5 vèrtexs:

0: 2, 1
1: 3
2: 1, 4, 3
3:
4: 0

el qual donaria com a resultat el vector 7 1 7 0 7, indicant que hi ha 7 arestes diferents que
es poden visitar des del vèrtex 0 (totes les arestes), hi ha una des del vèrtex 1 (l’aresta que
va de 1 a 3), hi ha 7 des del vèrtex 2 (totes), no n’hi ha cap des del vèrtex 3 i hi ha 7 des del
vèrtex 4 (totes).
Cal enviar a jutge.org la següent especificació de la classe 𝑔𝑟𝑎𝑓 i la implementació del mètode
dins del mateix fitxer (la resta de mètodes públics ja estan implementats). Indica dins d’un
comentari a la capçalera del mètode el seu cost en funció del nombre de vèrtexs 𝑛 i el nombre
d’arestes 𝑚 del graf.
#include <vector>
using namespace std;
typedef unsigned int nat;

class graf {
// Graf dirigit i no etiquetat.
// Les arestes es guarden en llistes d’adjacència (vector amb els successors).
public:
// Constructora per defecte. Crea un graf buit.
graf ();

// Destructora
~graf();

// Llegeix les dades del graf del canal d’entrada
void llegeix ();



vector<nat> quantes_arestes_es_visiten () const;
// Pre: Cert
// Post: Retorna quantes arestes diferents es poden visitar (hi ha un camí)
// des de cada vèrtex del graf.

private:
nat n; // Nombre de vèrtexs
nat m; // Nombre d’arestes

struct node_succ {
nat _succ ; // Vèrtex successor
node_succ∗ _seg ; // Següent successor

};
vector<node_succ ∗> a; // Vector amb llistes simplement encadenades

// dels successors de cada vèrtex

// Aquí va l’especificació dels mètodes privats addicionals

};

// Aquí va la implementació del mètode públic quantes_arestes_es_visiten i privats addi-
cionals

Degut a que jutge.org només permet l’enviament d’un fitxer amb la solució del problema,
en el mateix fitxer hi ha d’haver l’especificació de la classe i la implementació del mètode
𝑞𝑢𝑎𝑛𝑡𝑒𝑠_𝑎𝑟𝑒𝑠𝑡𝑒𝑠_𝑒𝑠_𝑣𝑖𝑠𝑖𝑡𝑒𝑛 (el que normalment estarien separats en els fitxers .ℎ𝑝𝑝 i .𝑐𝑝𝑝).
Per testejar la classe disposes d’un programa principal que llegeix un graf i després crida el
mètode 𝑞𝑢𝑎𝑛𝑡𝑒𝑠_𝑎𝑟𝑒𝑠𝑡𝑒𝑠_𝑒𝑠_𝑣𝑖𝑠𝑖𝑡𝑒𝑛.

Entrada
L’entrada conté un graf: el nombre de vèrtexs, el nombre d’arestes i una llista d’arestes. Cada
aresta s’indica pels dos vèrtexs que relaciona.

Sortida
Escriu una línia amb el nombre d’arestes diferents que es poden visitar des de cada vèrtex
del graf separats per espais.

Observació
Només cal enviar la classe requerida i la implementació delmètode 𝑞𝑢𝑎𝑛𝑡𝑒𝑠_𝑎𝑟𝑒𝑠𝑡𝑒𝑠_𝑒𝑠_𝑣𝑖𝑠𝑖𝑡𝑒𝑛.
Pots ampliar la classe amb mètodes privats. Segueix estrictament la definició de la classe de
l’enunciat.
Indica dins d’un comentari a la capçalera del mètode el seu cost en funció del nombre de
vèrtexs 𝑛 i el nombre d’arestes 𝑚 del graf.

Exemple d’entrada 1
1
0

Exemple de sortida 1
0



Exemple d’entrada 2
2
0

Exemple de sortida 2
0 0

Exemple d’entrada 3
2
1
0 1

Exemple de sortida 3
1 0

Exemple d’entrada 4
2
2
0 1
1 0

Exemple de sortida 4
2 2

Exemple d’entrada 5
3
4
0 2
0 1
1 2
2 0

Exemple de sortida 5
4 4 4

Exemple d’entrada 6
5
7
4 0
0 2
0 1
2 1
2 4
2 3
1 3

Exemple de sortida 6
7 1 7 0 7

Exemple d’entrada 7
6
9
1 5
1 0
3 1
4 0
0 5
5 1
2 3
0 1
5 0

Exemple de sortida 7
6 6 8 7 7 6

Informació del problema
Autoria: Jordi Esteve

Generació: 2026-01-25T17:11:43.672Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org



