
Jutge.org
The Virtual Learning Environment for Computer Programming

Desequilibris a l’inserir una clau en un BST X86307_ca

Donada la classe 𝑑𝑖𝑐𝑐 que permet gestionar diccionaris on només hi guardem claus úniques
usant arbres binaris de cerca (BST), cal implementar el mètode

vector<Clau> insereix(const Clau &k);
que insereix la clau k en el diccionari si no hi era i sempre retorna un vector amb les claus dels
nodes visitats on hi ha un desequilibri desprès de la inserció, començant per la més propera
a les fulles i acabant per la més propera a l’arrel. Un node està desequilibrat quan el factor
d’equilibri és superior a 1.
ATENCIÓ:No cal equilibrar el BST tal com succeeix amb els AVL, sinó que dels nodes visitats
només cal indicar els que no compleixen que el factor d’equilibri sigui igual o inferior a 1.
Un BST pot tenir varis nodes desequilibrats.
Les claus són del tipus 𝐶𝑙𝑎𝑢 que admet una relació d’ordre total, és a dir, tenim una operació
de comparació < entre claus.
Cal enviar a jutge.org la següent especificació de la classe 𝑑𝑖𝑐𝑐 i la implementació del mètode
dins del mateix fitxer. Indica dins d’un comentari a la capçalera del mètode el seu cost en
funció del nombre d’elements del diccionari en el cas mig i en el cas pitjor.
#include <iostream>
#include <vector>
using namespace std;
typedef unsigned int nat;

template <typename Clau>
class dicc {
public:

dicc() : _arrel (NULL) {};
// Pre: Cert
// Post: El resultat és un dicc sense cap element

~dicc();
// Pre: Cert
// Post: El dicc ha estat destruït

vector<Clau> insereix(const Clau &k);
// Pre: Cert
// Post: La clau k s’ha inserit en el diccionari si no hi era. Retorna un vector amb
// les claus dels nodes visitats on hi ha un desequilibri desprès de la inserció,
// començant per la més propera a les fulles i acabant per la més propera a l’arrel.

private:
struct node {
Clau _k ; // Clau
node∗ _esq ; // fill esquerre
node∗ _dret ; // fill dret
nat _h; // Altura del subarbre



};
node ∗_arrel ;

static void esborra_nodes(node∗ m);

// Aquí va l’especificació dels mètodes privats addicionals
};

// Aquí va la implementació dels mètodes públics i privats

Degut a que jutge.org només permet l’enviament d’un fitxer amb la solució del problema,
en el mateix fitxer hi ha d’haver l’especificació de la classe i la implementació del mètode
𝑖𝑛𝑠𝑒𝑟𝑒𝑖𝑥 (el que normalment estarien separats en els fitxers .ℎ𝑝𝑝 i .𝑐𝑝𝑝).
Per testejar la classe disposes d’un programa principal que llegeix i insereix enters a un dic-
cionari amb claus enteres inicialment buit.

Entrada
L’entrada conté una seqüències d’enters, són els elements que s’insereixen a un diccionari
inicialment buit.

Sortida
Per a cada enter d’entrada, escriu una línia amb el text ”insereix”, seguit de l’enter d’entrada,
el separador ”:” i la llista de claus enteres a on s’han detectat desequilibris separades per un
espai.

Observació
Només cal enviar la classe requerida i la implementació del mètode 𝑖𝑛𝑠𝑒𝑟𝑒𝑖𝑥. Pots ampliar la
classe amb mètodes privats. Segueix estrictament la definició de la classe de l’enunciat.
Has de visitar els nodes del BST estrictament necessaris per fer la inserció, per això et pots
ajudar de l’atribut _ℎ de cada node que guarda l’altura del seu subarbre. Aquest atribut l’has
d’actualitzar quan insereixis una clau.
Indica dins d’un comentari a la capçalera delmètode el seu cost en funció del nombre d’elements
del diccionari en el cas mig i en el cas pitjor.

Exemple d’entrada 1
6
8
9
7
4

Exemple de sortida 1
insereix 6:
insereix 8:
insereix 9: 6
insereix 7: 6
insereix 4:

Exemple d’entrada 2
5

-3
8
2

-1
-3

7
-7

6
-2

9
0

-4



Exemple de sortida 2
insereix 5:
insereix -3:
insereix 8:
insereix 2:
insereix -1: -3 5
insereix -3: -3 5

insereix 7:
insereix -7:
insereix 6: 8
insereix -2: 2 -3
insereix 9:
insereix 0: 2 -3
insereix -4:

Informació del problema
Autoria: Jordi Esteve

Generació: 2026-01-25T16:54:44.492Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

