Jutge.org

The Virtual Learning Environment for Computer Programming

Esquivar a un altre iterador a base de moure’s un pas mésX82913_ca

Tipicament, executar ++ sobre un iterador que es troba a I’end de la llista produeix error
d’execuci6, i executar —— sobre un iterador que es troba al begin de la llista també produeix
error d’execucié. Per comencar, en aquest exercici modificarem la subclasse iterator de
la classe List de manera que els errors d’execucié abans esmentats ja no es produiran. Sim-
plement, en tals casos els iteradors no es mouran.

Després modificarem la classe iterator afegint dos nous métodes dodge i stopDodge, i
canviant el comportament dels metodes ++ i —— com descrivim a continuacio.

El nou metode dodge rebra un altre iterator com a parametre (és a dir, un iterador
del mateix tipus, tot i que potser apunta a un element d’una llista diferent). Una crida
it0.dodge (it1l) provocara que, a partir d’ara, 1t0 intenti evitar apuntar al mateix lloc
que it1, a base de prolongar amb un pas més els moviments que ho poden provocar.

Més concretament, suposem que it 0 no apunta a I’end de la llista. Llavors, amb una crida
it0++ 0 ++1t0, l'iterador it 0 fara un pas cap a I'end de la llista. Si després d’aquest movi-
ment encara no ha arribat a I'end i passa que it 0 apunta al mateix lloc que it1, llavors
encara fara un pas més cap a l'end de la llista.

Analogament, suposem que it0 no apunta al begin de la llista. Llavors, amb una crida
it0-- 0 —-it0, literador it 0 fara un pas cap al begin de la llista. Si després d’aquest
moviment encara no ha arribat al begin i passa que it 0 apunta al mateix lloc que it 1, llavors
encara fara un pas més cap al begin de la llista.

En altres paraules, it 0 mira de fer dos passos si fent-ne només un queda apuntant al mateix
lloc que it1.

Fixeu-vos que la crida it0.dodge (it1) no imposa restriccions al moviment de it1. Per
tant, aquesta crida no implica que itl intenti esquivar itO0.

Una crida posterior 1t0.dodge (it2) posa restriccions al moviment de it 0 respecte de
it2, perd també deixa sense efecte la crida anterior it 0.dodge (it1), ésadir, cancel.la les
restriccions del moviment de it 0 respecte de it1.

Una crida posterior it 0.stopDodge () cancella les restriccions del moviment de it 0 re-
specte de qualsevol altre iterador.

Fixeu-vos en aquest exemple per tal d’acabar d’entendre-ho:

List<int> 10, 11;
List<int>::iterator a, b, ¢, d;

10.push_back (1) ; // 10: 1,
10.push_back (2) ; // 10: 1,2,
10.push_back (3) ; // 10: 1,2, 3,
11.push_back (4) ; // 11: 4,
11.push_back (5) ; // 11: 4,5,
11.push_back (6) ; // 11: 4,5,6,

a = 10.begin () ; // 10: 1la, 2,3,
b = 10.end() ; // 10: 1a,2,3,b
c = 1ll.begin(); // 11: 4c,5, 6,
d = 1l.end(); // 1l1: 4¢,5,6,d

Ct++;

//
//
//
//

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

//
//
//
//
//
//

10:
10:
10:
10:

10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:

10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:

10:
10:
10:
10:
10:
10:

la,2,3,b
1,2a,3,b
1,2a,3,b
1, 2a, 3b,

1,2,3b,a
1, 2a, 3b,
1, 2ab, 3,
1, 2b, 3a,
la, 2b, 3,
lab, 2, 3,
lab, 2, 3,
1b, 2a, 3,
lab, 2, 3,
la, 2b, 3,
1, 2b, 3a,
1,2, 3ab,
1,2,3a,b
1,2,3,ab
1,2,3,ab
1,2,3,ab

w
lon
)

el e e e e e e e
DD NDNDDNODNDNDNDNDNDNDNDNDNDN
w w

~

w

w

w

w

w

w

~

w

w

w

w

w

w

w

w
QY L Y Y YYD YYD
UUU@U@UU?UUUUUUU@

w w w
Qo
[©en

e e e
NN NN
w
)
o

11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:

11:
11:
11:
11:
11:
11:

4,5d, 6¢,
4,5,6c,d
4,5,6,cd
4,5,6,cd
4,5,6,cd

4,5,6¢c,d
4,5d, 6¢c,
4,5dc, 6,
4c, 5d, 6,
4,5cd, o,
4,5d, 6c,

d.stopbodge () ;
d++; // 10: 1,2,3ab, 11: 4,5, 6cd,

D’entre els fitxers que s’adjunten en aquest exercici, trobareu 1ist .hh, a on hi ha una im-
plementaci6 de la classe genérica List. Haureu d’implementar els dos nous metodes dodge
i stopbodge dins 1ist.hh a la part publica de la classe iterator (podeu trobar les
capcaleres comentades dins 1ist . hh), i modificar els dos metodes ++ i els dos metodes —-
convenientment (en realitat només cal modificar el pre-increment i el pre-decrement perque
el post-increment i post-decrement criden als primers). Necessitareu també algun atribut
addicional per tal de recordar si l'iterador té un dodge actiu i amb qui, amb les convenients
inicialitzacions.

Més concretament, heu de fer els canvis que s’indiquen en algunes parts del codi de list.hh:

// Iterators mutables
class iterator {
friend class List;
private:
List *plist;
Item *pitem;
// Add new attributes to remember if the iterator has an active 'dodge'
// and with which other iterator.

public:

iterator () {
// Add initialization of new attributes.

// Adapt this function so that moving beyond boundaries does not trigger er
// but leaves the iterator unchanged instead.
// Also, add the necessary adaptations so that, the method attempts one ext
// when there is an active 'dodge' and the first move implies pointing to th
// the other involved iterator.
// Preincrement
iterator operator++()
/* Pre: el p.i apunta a un element E de la llista,

que no és el end() */
/* Post: el p.i apunta a l'element seglent a E

el resultat és el p.i. */

if (pitem == & (plist->itemsup)) {
cerr << "Error: ++iterator at the end of list" << endl;
exit (1) ;

}
pitem = pitem->next;
return *this;

// Adapt this function so that moving beyond boundaries does not trigger er

// but leaves the iterator unchanged instead.

// Also, add the necessary adaptations so that, the method attempts one ext
// when there is an active 'dodge' and the first move implies pointing to th

// the other involved iterator.

// Predecrement

iterator operator—-()

/* Pre: el p.i apunta a un element E de la llista que
no és el begin() */

/* Post: el p.i apunta a l'element anterior a E,
el resultat és el p.i. */

if (pitem == plist—->iteminf.next) {
cerr << "Error: —-—-iterator at the beginning of list" << endl;
exit (1) ;

}
pitem = pitem->prev;
return *this;

// Pre: 'it' != 'this'

// Post: Once executed, any move attempt (++ or —--) on 'this' will cause be
// extented with one extra move attempt if the first move makes

// point to the same place as 'it'.

// All former dodge's are cancelled.

// Remove comment marks and implement this function:
// void dodge (iterator &it) {
//)

// Pre: 'this' has an active dodge.

// Post: All former dodge's are cancelled.

// Remove comment marks and implement this function:
// void stopDodge () {

/7)

No cal decidir que passa amb assignacions entre iteradors existents, doncs no es consideraran
en els jocs de proves.

D’entre els fitxers que s’adjunten a I’exercici també hi ha main.cc (programa principal), i
el podeu compilar directament, doncs inclou 1ist.hh. Només cal que pugeu 1ist .hh al
jutge.

Entrada

L'entrada del programa comenca amb una declaraci6é d'unes quantes llistes (10, 11, ...)
i uns quants iteradors (a, b, ¢, ...), i després té una seqiiéncia de comandes sobre les

llistes i els iteradors declarats. Com que ja us oferim el main.cc, no cal que us preocu-
peu d'implementar la lectura d’aquestes entrades. Només cal que implementeu la extensi6é
de la classe iterator abans esmentada.

Per simplificar, no hi haura comandes que eliminin elements de les llistes, com pop_back,
pop_front i erase. Podeu suposar que les comandes no fan coses extranyes, com fer
que un iterador tingui un dodge a si mateix, i que sempre que un iterador sigui mogut,
aquest estara apuntant a alguna posicié d’alguna llista. Podeu suposar que les comandes
faran st opDodge només sobre iteradors que tinguin un dodge actiu. Pero pot ser el cas que
es faci un dodge sobre un iterador que ja tingui un dodge actiu. Com mencionavem abans,
en aquestes situacions només 1'altim dodge aplica.

Sortida

Per a cada comanda d’escriptura sobre la sortida s’escriura el resultat corresponent. Elmain.cc
que us oferim ja fa aix0. Només cal que implementeu la extensi6 de la classe iterator abans
esmentada.

Exemple d’entrada 1 a .dodge(b);
List<int> 10, 1l a ++; // 10: 1,2,3b,a
List<int>::iterator a , b , ¢ , d ;
cout<< 10 <<endl;
10 .push_back(1); // 10: 1, cout<< 11 <<endl;
10 .push_back(2); // 10: 1,2,
10 .push_back(3); // 10: 1,2, 3, a ——; // 10: 1,2a,3b,
11 .push_back(4); // 11: 4,
11 .push_back(5); // 11: 4,5, cout<< 10 <<endl;
11 .push_back(6); // 11: 4,5,6, cout<< 11 <<endl;
a = 10 .begin(); // 10: 1la, 2,3, b ——; // 10: 1,2ab,3,
b = 10 .end(); // 10: 1la,2,3,b
c =11 .begin(); // 11: 4c,5,6, cout<< 10 <<endl;
d =11 .end(); // 11: 4c¢,5,6,d cout<< 11 <<endl;
cout<< 10 <<endl; a ++; // 10: 1,2b, 3a,
cout<< 11 <<endl;
cout<< 10 <<endl;
a ——; // 10: la,2,3,b cout<< 11 <<endl;
cout<< 10 <<endl; 4 ——- // 10: 1la,2b,3
cout<< 11 <<endl;
cout<< 10 <<endl;
a ++; // 10: 1,2a,3,b cout<< 11 <<endl;
cout<< 10 <<endl; b ——: // 10: lab, 2,3
r . I ! !
cout<< 11 <<endl;
cout<< 10 <<endl;
b ++; // 10: 1,2a,3,b cout<< 11 <<endl;
cout<< 10 <<endl; b ——: // 10: lab, 2,3
r . U U r
cout<< 11 <<endl;
cout<< 10 <<endl;
b ——; // 10: 1,2a,3b, cout<< 11 <<endl;
cout<< 10 <<endl; a ++; // 10: 1b, 2a,3
cout<< 11 <<endl;
cout<< 10 <<endl;

cout<<
cout<<

b ++;

cout<<
cout<<

a ++;

cout<<
cout<<

cout<<
cout<<

b ++;

cout<<
cout<<

a ++;

cout<<
cout<<

a ++;

cout<<
cout<<

cout<<
cout<<

11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

!/

/7

//

1/

/7

1/

!/

/7

//

1/

1/

//

10:

10:

10:

10:

10:

10:

10:

10:

10:

10:

10:

10:

lab, 2, 3,

la, 2b, 3,

1, 2b, 3a,

1,2, 3ab,

1,2,3a,b

1,2,3,ab

1,2,3,ab

1,2,3,ab

1,2,3b,a

1,2, 3ab,

1,2, 3ab,

1,2,3ab,

11:

11:

cout<< 10
cout<< 11

cout<< 10
cout<< 11

cout<< 10
cout<< 11

d ——;

cout<< 10
cout<< 11

cout<< 10
cout<< 11

cout<< 10
cout<< 11

cout<< 10
cout<< 11

cout<< 10
cout<< 11

cout<< 10
cout<< 11

4c,5,6,d
cout<< 10
cout<< 11

4c,5,6,d
cout<< 10

cout<< 11
d ++;
4c,5,6,d

cout<< 10
cout<< 11

c ++;
4,5c,6,d

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

/7

1/

!/

/7

!/

1/

/7

1/

1/

!/

1/

1/

10:

10:

10:

10:

10:

10:

10:

10:

10:

10:

10:

10:

1,2, 3ab,

1,2, 3ab,

1,2, 3ab,

1,2, 3ab,

1,2, 3ab,

1,2, 3ab,

1,2, 3ab,

1,2,3ab,

1,2, 3ab,

1,2, 3ab,

1,2,3ab,

1,2, 3ab,

11:

11:

11:

11:

11:

11:

11:

11:

11:

11:

11:

11:

4,5,6¢c,d

4,5,6,cd

4,5,6d,c

4,5c, 6d,

4d, 5¢, 6,

4cd, 5, 6,

4cd, 5, 6,

4cd, 5, 6,

4c, 5d, 6,

4,5d, 6¢,

4,5,6¢c,d

4,5,6,cd

cout<<
cout<<

cout<<
cout<<

c ++;

cout<<
cout<<

10
11

10
11

10
11

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

c .stopDodge () ;

c -

cout<<
cout<<

cout<<
cout<<

c ++;

cout<<
cout<<

c ++;

cout<<
cout<<

10
11

10
11

10
11

10
11

10
11

10
11

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

d .stopDodge () ;

cout<< 10 <<endl;
cout<< 11 <<endl;

d ++;

!/

!/

1/

/7

1/

!/

/7

1/

// 10:

10:

10:

10:

10:

10:

10:

10:

10:

1,2, 3ab,

1,2, 3ab,

1,2, 3ab,

1,2, 3ab,

1,2, 3ab,

1,2, 3ab,

1,2, 3ab,

1,2,3ab,

1,2, 3ab,

11

117

11

11

11

117

11

11

11

Exemple de sortida 1

la,2,3,b
49,3, %, 44
la,2,3,b
4c,5,6,d
1,2a,3,b
4c,5,6,d
1u2a, F kg
4c,5,6,d
1,2a, 3b,
4c,5,6,d
1,2,3b,a
4c,5,6,d
Lu2a, 3 g
4c,5,6,d
1, 2ab, 3,
4c,5,6,d
1,2b, 3a,
49, 3406,
la, 2b, 3,
4c,5,6,d
lab, 2, 3,
4c,5,6,d
:1%96%C§6,
4c,5,6,d
1b, 2a, 3,
4c,5,6,d
lab, 2, 3,
A% sty $,
la, 2b, 3,
4¢c,5,6,d
1, 2b, 3a,
4c,5,6,d
L2 53,
4¢c,5,6,d
1,2,3a,b
4¢c,5,6,d
1,2,3,ab
49, 30w,
1,2,3,ab
4c,5,6,d
1,2,3,ab
4¢c,5,6,d
1,2,3b,a
4c,5,6,d
1,2, 3ab,
4c,5,6,d
1,2, 3ab,
49, %, B,
1,2, 3ab,
4,5c,6,d
1,2, 3ab,
4,5,6¢c,d
1,2, 3ab,
4,5,6,cd
1,2, 3ab,
4,5,6d,c
1,2, 3ab,
4,5c, 6d,
1,2, 3ab,

4d, 5¢, 6,
1,2, 3ab,
4cd, 5, 6,
1,2, 3ab,
4cd, 5, 6,
1,2, 3ab,
4cd, 5, 6,
1,2, 3ab,
4c, 5d, o,
1,2, 3ab,
4,5d, 6c,
1,2, 3ab,
4,5,6¢c,d
1,2, 3ab,
4,5,6,cd
1,2, 3ab,
4,5,6,cd

Exemple d’entrada 2

List<int> 10 , 11 ;
List<int>::iterator a ,

a = 11 .begin();
b = 10 .begin();
c = 11 .begin();
d = 11 .begin();
e = 11 .begin();
cout<< 10 <<endl;
e ——;

cout<< 10 <<endl;
d ++;

c .dodge(d);
cout<< 10 .size()<<endl;
cout<< 11 <<endl;

++ a ;
11 .push_back(1);
11 .insert(c , -1);

cout<< 11 <<endl;

10 .push_back(0);
11 .push_front(-4);
cout<< 11 <<endl;
cout<< 11 <<endl;

e ——;

cout<< 10 <<endl;
++ a ;

10 .push_front(0);
11 .push_back(-4);
c .dodge(d);
-— b ;

e ——;

e ——;

d .dodge(b);

d ++;

cout<< 10 <<endl;
cout<< 10 .size()<<endl;

cout<< 10 <<endl;

2, 3ab,
5,6,cd
1,2, 3ab,
4,5,6¢c,d
1,2, 3ab,
4,5d, 6¢,
1,2, 3ab,
4,5cd, 6,
1,2, 3ab,
4c, 5d, 6,
1,2, 3ab,
4,5cd, o,
1,2, 3ab,
4,5d, 6¢c,
1,2,3ab,
4,5d, 6¢,

1,
4,

++ ¢ ;

b .dodge(d);

cout<< 11 <<endl;

e .dodge(a);

—_— b I-

cout<< 11 <<endl;

e .dodge(d);

—_— b I-

++ a ;

e .dodge(a);

cout<< 10 <<endl;
cout<< 11 <<endl;

a ++;

cout<< 10 <<endl;
cout<< 10 <<endl;

d -——;

cout<< 11 .size()<<endl;
cout<< 11 <<endl;

++ e ;

d ++;

e = 10 .begin();
cout<< 10 .size()<<endl;
cout<< 11 .size()<<endl;
a ——j

10 .insert(b , 4);
a ——j

-—d ;

a ——;

d .dodge(c);

11 .push_front(-2);
cout<< 11 <<endl;
cout<< 11 .size()<<endl;
b .dodge(c);

d ++;

c —=7

11 .insert(d , 2);
cout<< 10 <<endl;
cout<< 10 <<endl;
cout<< 10 <<endl;
cout<<* a <<endl;

10 .push_back(3);

c ++;

c =
cout<<* b <<endl;

cout<< 10 <<endl;

cout<< 11 .size()<<endl;
d = 10 .begin();

++ b ;

cout<< 11 <<endl;

d ——;

cout<< 10 <<endl;
cout<<* c <<endl;

d ++;

10 .insert(e , 2);
e ++;

e ——;

-— b ;

a =11 .end();

— e

— e ;

a —j

e ++;

10 .insert(b , 2);
cout<< 11 <<endl;

b ——;

c ++;

11 .push_back(1);
c = 11 .begin();

b ——;

11 .push_back(4);
cout<< 11 <<endl;

11 .push_front(3);

11 .insert(c , -2);
c ++;

a ++;

b =11 .end();

e ++;

cout<< 10 <<endl;
cout<< 11 <<endl;

e ++;

cout<< 11 <<endl;

11 .insert(a , -1);
e = 11 .begin();

++ b ;

e .dodge(d);

11 .push_back(4);
cout<<* a <<endl;

c .dodge(b);

10 .insert(d , 0);
c = 10 .end();

cout<< 11 .size()<<endl;

!

Cc ++;

c ++;

c = 10 .end();
d .dodge(e);
++ d ;

d .stopDodge () ;

a .dodge(d);
cout<< 10 <<endl;
e .dodge(a);
cout<<* d <<endl;
cout<< 11 <<endl;

d .dodge(a);
cout<< 11 <<endl;

b =11 .begin();

c -

e .dodge(b);

++ e ;

cout<<* d <<endl;

++ c ;

d ——;

++ d ;

cout<< 10 .size()<<endl;
b ——;

cout<< 10 <<endl;
cout<< 11 .size()<<endl;
cout<< 11 <<endl;

— e ;

11 .push_back(2);
10 .insert(d , 1);
e -

a —=;

a ++;

cout<< 11 <<endl;

c .dodge(e);

— a ;

b .dodge(d);
cout<< 11 <<endl;

c -
++ b ;

10 .push_front(-4);
10 .insert(c , 0);
b .dodge(e);

b ++;

10 .push_back(-3);
a .stopDodge () ;

-— a ;

c ++;

cout<< 11 <<endl;
cout<< 10 <<endl;
cout<< 11 <<endl;

e ——;

11 .push_back(1);
11 .push_back(3);
cout<<* b <<endl;

e .dodge(a);
cout<< 10 .size()<<endl;
cout<< 11 <<endl;
cout<< 11 <<endl;

a .dodge(e);

d .dodge(a);

— e ;
++ c ;
cout<< 10 <<endl;
++ d ;
— e ;
d ++;
— c ;
cout<< 10 <<endl;
-—-d ;
c ++;
— c ;

e .dodge(d);

b .dodge(a);

C ++;

cout<< 10 <<endl;
cout<< 11 <<endl;

Exemple de sortida 2

b

b

0

acde
1,-1,acde

-4,1,-1,acde
-4,1,-1,acde
0,b

0, Ob,

2

0,0,b
-4,1e,-1,-4d, ac
-4,1e,-1,-4d, ac
0b, 0,
-4,1e,-1,-4d, ac
0b, 0,

0b, 0,

4
-4,1e,-1d, -4, ac
2

4
-2,-4,1a,-1d,-4, c
5

4, Obe, 0,

4, Obe, 0,

4, Obe, 0,

1

0

4, 0be, 0, 3,

6
-2,-4,1a,-1,2,-4c
4d, Oe, Ob, 3,

-4

-2,-4,1,-1,2,-4ac,

-2c,-4,1,-1,2,-4a,1,4,

4,2,2e,0d,0,3,

3,-2,-2,-4c¢,1,-1,2,
-1,2

3,-2,-2,-4¢, 1,

1

12
4,2,2,0,0,0d,3,c

3e,-2,-2,-4,1,-1
3e,-2,-2,-4,1,-1
0
.

4,2,2,0,0,0d,3,c
12
3b, -2e,-2,-4,1
3be, -2,-2,-4,1
3be,-2,-2,-4,1, -
1
1
1

3e,-2,-2b,-4,1, -
-4,4,2,2,0,0,1,0
3e,-2,-2b,-4,1, -
-2

11

3e,-2,-2b,-4,1, -
3e,-2,-2b,-4,1, -
-4,4,2,2,0,0,1,0

!

7

’
2
2
2
2
0
2

2
2
0

-4,1a,4,b
-4,1a,4,b

-4,-1,1a, 4, 4b,
-4,-1,1a, 4, 4b,

,—4,-1,1a,4,4,
,—4,-1,1a,4,4, 2,
,—4,-1a,1,4,4, 2,
,—4a,-1,1,4,4,2,
, 3, -3¢,

I_4al _lr lr 4/ 4! 21

’ _4a/ _lr
r_4ar _lr
73! 73/ c

—

-4,4,2,2,0,0,1,0,0,3d, -3¢, 3e,-2,-2b,-4,1,-1,2,-4a,-1,1,4,4,2,1, 3,
-4,4,2,2,0,0,1,0,0d,3,-3,c
Observaci6

Avaluaci6 sobre 10 punts:
e Soluci6 lenta: 5 punts.
e soluci6 rapida: 10 punts.

Entenem com a solucié rapida una que és correcta, on totes les operacions tenen cost constant
(excepte l'escriptura de tota la llista per la sortida, que té cost lineal), i capag de superar els
jocs de proves ptblics i privats. Entenem com a soluci6 lenta una que no és rapida, pero és
correcta i capag de superar els jocs de proves publics.

Informacié del problema
Autoria: PRO2
Generacio: 2026-01-27T18:56:27.268Z

© Jutge.org, 2006-2026.
https:/ /jutge.org

https://jutge.org

