

Cheapest Routes

X81287_en

We have collected abundant information about the local roads and accommodations in a region that we will traverse. Our plan is to go from city A to city B and we would like to spend the least possible money. For each road connecting two cities u and v we know the cost $\omega(u, v) = \omega(v, u)$ to travel along that road (tolls, fuel, meals during the journey, ...). Every time we go from a city u to one of its neighbors v we must stop at v and spend there one night; we know the cost $\omega'(v)$ of stopping at each city v (the cost added by A and B to our route is 0, since they are our initial and final points). All costs, of vertices and of edges, are non-negative. Thus the cost of the route

$$P = [A, v_1, \dots, v_n, B]$$

is

$$\text{cost}(P) = \omega(A, v_1) + \omega(v_1, v_2) + \dots + \omega(v_n, B) + \omega'(v_1) + \dots + \omega'(v_n).$$

Write a program in C++ which, given an undirected weighted graph with non-negative costs at the vertices and at the edges, and two vertices A and B , returns the cost of the cheapest route to go from A to B , or an indication that no such route exists.

Input

All data in the input are non-negative integers. The input starts with two integers $2 \leq n \leq 10000$ and m , $0 \leq m \leq 20n$. After that, a sequence of non-negative integers $\omega'(0), \dots, \omega'(n - 1)$ of the weights $\omega'(u)$ of the n vertices of the graph. Then the input contains a sequence of the m edges in the graph as triplets of the form $\langle u, v, \omega(u, v) \rangle$. Vertices u and v are integers in $\{0, \dots, n - 1\}$ and the weights $\omega(u, v)$ are non-negative integers. You can assume that there are no two different edges connecting the same pair of vertices nor any edge connecting a vertex to itself. Finally, there is a sequence of pairs $\langle A_i, B_i \rangle$, with each A_i and B_i denoting vertices of the graph ($0 \leq A_i, B_i < n$).

Output

For each pair $\langle A_i, B_i \rangle$ in the input sequence the program writes the cost δ of the cheapest route between A_i and B_i , with the format $c(A_i, B_i) = \delta$. If no route exists between A_i and B_i the program writes $c(A_i, B_i) = +\infty$. The output for each case is ended with a newline (`endl`).

Sample input 1

```
6 8
3 6 10 15 5 2
0 1 2 1 2 7 2 3 2
0 2 1 1 3 4 2 4 8
3 4 2 3 0 5
0 4
1 4
2 4
3 1
4 1
```

```
2 5
2 2
```

Sample output 1

```
c(0, 4) = 19
c(1, 4) = 21
c(2, 4) = 8
```

c(3, 1) = 4
c(4, 1) = 21
c(2, 5) = +oo
c(2, 2) = 0

Problem information

Author: Conrado Martinez

Generation: 2026-01-25T22:36:23.768Z

© *Jutge.org*, 2006–2026.

<https://jutge.org>