
Jutge.org
The Virtual Learning Environment for Computer Programming

Agafar elements del front d’un altreQueue en elmateix ordreX79029_ca

En aquest exercici estendrem la classeQueue afegint un noumètode anomenattake. Aquest
mètode té, com a paràmetres, un altre Queue, i un natural k, i la seva crida té com a efecte
que movem els k elements del front de l’altre Queue al final del paràmetre implícit, i en el
mateix ordre.
Més específicament, suposem que un Queue t té contingut [𝑎1, 𝑎2, … , 𝑎𝑛] (on els elements
els representem en ordre des del front fins el final, i en particular 𝑎1 és l’element del front), i
que un altre Queue q té contingut [𝑏1, 𝑏2, … , 𝑏𝑚]. Llavors, una crida t.take(q, k) té com
a efecte que t passi a contenir [𝑎1, … , 𝑎𝑛, 𝑏1, … , 𝑏𝑘] i q passi a contenir [𝑏𝑘+1, … , 𝑏𝑚].
Per exemple, si t conté [3, 1, 5] i q conté [9, 4, 6, 8, 2], llavors la crida t.take(q, 3) té com
a efecte que t passi a contenir [3, 1, 5, 9, 4, 6], i que 𝑞 passi a contenir [8, 2].
En el cas particular que k sigui més gran que m, llavors es mouen tots els elements de s a t.
És a dir, t passa a contenir [𝑎1, … , 𝑎𝑛, 𝑏1, … , 𝑏𝑚], i q passa a contenir [].
Per exemple, si t conté [3, 1, 5] i q conté [9, 4, 6, 8, 2], llavors la crida t.take(s, 10) té com
a efecte que t passi a contenir [3, 1, 5, 9, 4, 6, 8, 2], i que 𝑞 passi a contenir [].
D’entre els fitxers que s’adjunten en aquest exercici, trobareu queue.hh, a on hi ha una
implementació de la classe genèrica Queue. Haureu de buscar dins queue.hh les següents
línies:

// Pre: Sigui [a1,...,an] el contingut del paràmetre implícit (des del front fins al final).
// Sigui [b1,...,bm] el contingut de q.
// k>=0
// Post: En el cas en que k>=m, aquest és el resultat:
// [a1,...,an,b1,...,bm] és el contingut del paràmetre implícit.
// [] és el contingut de q.
// En canvi, en el cas k<m, aquest és el resultat:
// [a1,...,an,b1,...,bk] és el contingut del paràmetre implícit.
// [b{k+1},...,bm] és el contingut de q.
// Descomenteu les següents dues linies i implementeu el mètode:
// void take(Queue<T> &q, int k) {
// ...
// }

Descomenteu les linies que s’indiquen i implementeu el mètode.
D’entre els fitxers que s’adjunten a l’exercici també hi ha main.cc (programa principal), i
el podeu compilar directament, doncs inclou queue.hh. Només cal que pugeu queue.hh
al jutge.
Observació: En aquest exercici es prefereix una solució basada en manegar punters abans
que una solució basada en cridar a mètodes primitius de la pròpia classe (push, pop,
front). De fet, manegar punters serà més ràpid, i fer-ho d’una altra forma possiblement
provocarà que no supereu els jocs de proves privats, quedant-vos així amb la meitat de la
nota.

Entrada
L’entrada del programa comença amb una declaració d’unes quantes cues d’strings (q0,
q1, ...), i després té una seqüència de comandes sobre les cues declarades. Com que ja
us oferim elmain.cc, no cal que us preocupeud’implementar la lectura d’aquestes entrades.
Només cal que implementeu la extensió de la classe cua abans esmentada.
Se suposa que la seqüència d’entrada serà correcta (sense pop ni front sobre cua buida), ni
farà coses extranyes com cridar a take de la pròpia cua (així que no cal que tracteu aquest
cas).
El programa principal que us oferim ja s’encarrega de llegir aquestes entrades i fer les crides
als corresponents mètodes de la classe cua. Només cal que feu els canvis abans esmentats.

Sortida
Per a cada comandad’escriptura sobre la sortida s’escriurà el resultat corresponent. Elmain.cc
que us oferim ja fa això. Només cal que implementeu la extensió de la classe cua abans es-
mentada.

Exemple d’entrada 1
Queue<int> q0 , q1 ;
q0 .push("a");
q0 .push("b");
q0 .push("c");
q0 .push("d");
q1 .push("e");
q1 .push("f");
q1 .push("g");
q1 .push("h");
cout<< q0 <<endl;
cout<< q1 <<endl;
cout<< q0 .size()<<endl;
cout<< q1 .size()<<endl;
cout<< q0 .front()<<endl;
cout<< q1 .front()<<endl;
q0 .take(q1 , 2)<<endl;
cout<< q0 <<endl;
cout<< q1 <<endl;
cout<< q0 .size()<<endl;
cout<< q1 .size()<<endl;
cout<< q0 .front()<<endl;
cout<< q1 .front()<<endl;
q1 .take(q0 , 3)<<endl;
cout<< q0 <<endl;
cout<< q1 <<endl;
cout<< q0 .size()<<endl;
cout<< q1 .size()<<endl;
cout<< q0 .front()<<endl;
cout<< q1 .front()<<endl;
q0 .take(q1 , 1)<<endl;
cout<< q0 <<endl;
cout<< q1 <<endl;
cout<< q0 .size()<<endl;
cout<< q1 .size()<<endl;
cout<< q0 .front()<<endl;
cout<< q1 .front()<<endl;
q1 .take(q0 , 0)<<endl;
cout<< q0 <<endl;

cout<< q1 <<endl;
cout<< q0 .size()<<endl;
cout<< q1 .size()<<endl;
cout<< q0 .front()<<endl;
cout<< q1 .front()<<endl;
q0 .take(q1 , 4)<<endl;
cout<< q0 <<endl;
cout<< q1 <<endl;
cout<< q0 .size()<<endl;
cout<< q1 .size()<<endl;
cout<< q0 .front()<<endl;
q1 .take(q0 , 9)<<endl;
cout<< q0 <<endl;
cout<< q1 <<endl;
cout<< q0 .size()<<endl;
cout<< q1 .size()<<endl;
cout<< q1 .front()<<endl;
q0 .take(q1 , 1000000000)<<endl;
cout<< q0 <<endl;
cout<< q1 <<endl;
cout<< q0 .size()<<endl;
cout<< q1 .size()<<endl;
cout<< q0 .front()<<endl;

Exemple de sortida 1
a b c d
e f g h
4
4
a
e
a b c d e f
g h
6
2
a
g
d e f
g h a b c
3
5
d
g
d e f g
h a b c
4
4

d
h
d e f g
h a b c
4
4
d
h
d e f g h a b c

8
0
d

d e f g h a b c
0
8
d
d e f g h a b c

8
0
d

Exemple d’entrada 2
Queue<int> q0 , q1 , q2 ;
cout<< q1 .size()<<endl;
q0 .push("bd");
q0 .take(q2 , 1);
cout<< q1 <<endl;
q1 .take(q2 , 0);
q1 .push("adb");
cout<< q1 .front()<<endl;
q1 .push("ccc");
q0 .push("ad");
q0 .take(q2 , 0);
cout<< q2 .size()<<endl;
q2 .push("dcb");
q1 .take(q2 , 0);
q2 .pop();
q1 .push("bb");
q0 .push("bcb");
q2 .take(q0 , 3);
cout<< q0 <<endl;
q2 .push("c");
q2 .take(q0 , 0);
q2 .push("daa");
q1 .push("cc");
cout<< q0 .size()<<endl;
q2 .push("db");
q2 .push("a");
q2 .push("ac");
q0 .push("ada");
q0 .push("bd");
q2 .take(q1 , 5);
cout<< q1 <<endl;
cout<< q0 <<endl;
q2 .push("dd");
q1 .take(q0 , 2);

q1 .push("aba");
cout<< q2 <<endl;
q2 .push("b");
q2 .push("aa");
q2 .push("ac");
cout<< q0 <<endl;
q2 .pop();
q2 .take(q1 , 3);
q1 .push("bad");
q0 .push("cd");
q1 .push("b");
q2 .push("d");
q0 .take(q1 , 4);
cout<< q1 .size()<<endl;
q2 .push("aac");
cout<< q0 .size()<<endl;
cout<< q0 <<endl;
q0 .push("dcd");
q2 .push("ba");
q2 .push("ccb");
q0 .push("bdd");
cout<< q2 .front()<<endl;
q2 .pop();
q2 .push("c");
cout<< q2 .size()<<endl;
cout<< q0 .size()<<endl;
q0 .push("acc");
cout<< q2 .front()<<endl;
cout<< q0 .size()<<endl;
q2 .take(q1 , 0);
cout<< q0 <<endl;
q2 .push("dca");
q0 .push("bcb");
q1 .push("d");
q2 .push("db");
cout<< q0 <<endl;

cout<< q1 <<endl;
q2 .pop();
q0 .push("aa");
q0 .pop();
q0 .pop();
q1 .push("d");
cout<< q1 .size()<<endl;
q0 .take(q2 , 14);
cout<< q0 <<endl;
q0 .push("b");
q1 .take(q0 , 11);
q0 .pop();
cout<< q0 <<endl;
cout<< q1 <<endl;
cout<< q2 <<endl;

Exemple de sortida 2
0

adb
0

0

ada bd
bd ad bcb c daa db a ac adb ccc bb cc dd

0
3
cd bad b
ad
22
5
bcb
6
cd bad b dcd bdd acc
cd bad b dcd bdd acc bcb
d
2
b dcd bdd acc bcb aa c daa db a ac adb ccc bb cc dd b aa ac ada
ccc bb cc dd b aa ac ada b
d d b dcd bdd acc bcb aa c daa db a ac
bd aba d aac ba ccb c dca db

Exemple d’entrada 3
Queue<int> q0 , q1 ;
q0 .push("a");
cout<< q0 <<endl;
cout<< q1 <<endl;
cout<< q0 .size()<<endl;
cout<< q1 .size()<<endl;
q0 .take(q1 , 2)<<endl;
cout<< q0 <<endl;
cout<< q1 <<endl;
cout<< q0 .size()<<endl;
cout<< q1 .size()<<endl;
q1 .take(q0 , 3)<<endl;
cout<< q0 <<endl;
cout<< q1 <<endl;
cout<< q0 .size()<<endl;
cout<< q1 .size()<<endl;
q0 .take(q1 , 1)<<endl;
cout<< q0 <<endl;
cout<< q1 <<endl;
cout<< q0 .size()<<endl;
cout<< q1 .size()<<endl;
q1 .take(q0 , 0)<<endl;
cout<< q0 <<endl;
cout<< q1 <<endl;
cout<< q0 .size()<<endl;
cout<< q1 .size()<<endl;
q0 .take(q1 , 4)<<endl;
cout<< q0 <<endl;
cout<< q1 <<endl;
cout<< q0 .size()<<endl;

cout<< q1 .size()<<endl;
q1 .take(q0 , 9)<<endl;
cout<< q0 <<endl;
cout<< q1 <<endl;
cout<< q0 .size()<<endl;
cout<< q1 .size()<<endl;
q0 .take(q1 , 1000000000)<<endl;
cout<< q0 <<endl;
cout<< q1 <<endl;
cout<< q0 .size()<<endl;
cout<< q1 .size()<<endl;

Exemple de sortida 3
a

1
0
a

1
0

a
0
1
a

1

0
a

1
0
a

1
0

a
0
1
a

1
0

Observació
Avaluació sobre 10 punts: (Afegiu comentaris si el vostre codi no és prou clar)

• Solució lenta: 5 punts.

• solució ràpida: 10 punts.

Entenemcoma solució ràpida una que és correcta i capaç de superar els jocs de proves públics
i privats. Entenem com a solució lenta una que no és ràpida, però és correcta i capaç de
superar els jocs de proves públics. Per exemple, una solució que superi tots els jocs de proves
però que manegui incorrectament la memòria serà invalidada i tindrà nota 0.
Una solució basada en cridar a mètodes primitius de la pròpia classe possiblement serà lenta
i, en cas que no ho sigui, pot tenir una certa penalització en la nota.

Informació del problema
Autoria: PRO2

Generació: 2026-01-27T18:55:46.662Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

