
Jutge.org
The Virtual Learning Environment for Computer Programming

Arbre màxim X77570_ca

Implementeu una funció RECURSIVA que, donats dos arbres binaris d’enters positius, obté
un nou arbre que conté, per a cada posició, el màxim dels valors dels dos arbres de partida
en les mateixes corresponents posicions. En cas que un dels arbres no tingui un valor definit
en una posició, s’agafa el valor de l’altre arbre. Aquesta és la capcelera:

// Pre: Rep dos arbres binaris d'enters positius t1 i t2.
// Post: Retorna un arbre, on a la seva arrel hi ha el màxim de les arrels de t1,t2,
// en l'arrel del fill esquerre hi ha el màxim de les arrels dels fills esquerre de t1,t2,
// en l'arrel del fill dret hi ha el màxim de les arrels dels fills drets de t1,t2,
// i així successivament.
// Quan un dels arbres no té valors definits en alguna posició, l'arbre resultant hi té
// el valor de l'altre arbre en aquella posició.

BinaryTree<int> maximumTree(BinaryTree<int> t1,BinaryTree<int> t2)

Aquí tenim un exemple d’entrada de la funció i la seva corresponent sortida:

8(8(,5),8(2,8))
9(7(9,),)
=>
9(8(9,5),8(2,8))

Fixeu-vos que l’enunciat d’aquest exercici ja ofereix uns fitxers que haureu d’utilitzar per a
compilar: Makefile, program.cpp, BinaryTree.hpp, maximumTree.hpp. Només
cal que creeu maximumTree.cpp, posant-hi els includes que calguin i implementant la fun-
ció maximumTree. I quan pugeu la vostra solució al jutge, només cal que pugeu un tar
construït així:

tar cf solution.tar maximumTree.cpp

Entrada
L’entrada té un nombre arbitrari de casos. Cada cas consisteix en dues línies. Cadascuna
d’aquestes dues línies té un string que descriu un arbre binari d’enters positius. Fixeu-vos
en que el programa que us oferim ja s’encarrega de llegir aquestes entrades. Només cal que
implementeu la funció abans esmentada.

Sortida
Per a cada cas, cal escriure l’arbre binari resultant de calcular el màxim entre els dos arbres
d’entrada. Fixeu-vos en que el programa que us oferim ja s’encarrega d’escriure aquesta
sortida. Només cal que implementeu la funció abans esmentada.



Exemple d’entrada 1
8(6,4(6,8))
1(9,)
9(5,)
1(6(8,7(3,6)),4(,2))
6(5,)
7(8(3,1(,7)),7)
7(4,)
2(9(2(4,),2),)
4(7(3,),9(,6(5,5)))
3(4,4)
3(2(,9),1(3,))
3(3,3)
6(2(5,),6(1(1,3),))
3(9(2(6,7),3(8,6)),5)
1(,3)
9(,3(3(,8),))
9(1,6)
4(5(2(5,6),8(9,)),)
3(7,4)
2(7,2)

Exemple de sortida 1
8(9,4(6,8))
9(6(8,7(3,6)),4(,2))
7(8(3,1(,7)),7)
7(9(2(4,),2),)
4(7(3,),9(,6(5,5)))
3(3(,9),3(3,))
6(9(5(6,7),3(8,6)),6(1(1,3),))
9(,3(3(,8),))
9(5(2(5,6),8(9,)),6)
3(7,4)

Observació
La vostra funció i subfuncions que creeu han de treballar només amb arbres. Heu de tro-
bar una solució RECURSIVA del problema. En les crides recursives, incloeu la hipòtesi
d’inducció, és a dir una explicació del que es cumpleix després de la crida, i també la funció
de fita/decreixement o una justificació de perquè la funció recursiva acaba.
Una solució directa superarà els jocs de proves públics i us permetrà obtenir una nota raon-
able. Però molt possiblement serà lenta, i necessitareu crear alguna funció recursiva auxiliar
per a produïr una solució més eficient capaç de superar tots els jocs de proves.
Avaluació sobre 10 punts:

• Solució lenta: 7 punts.

• Solució lenta + justificació: 8 punts.

• solució ràpida: 9 punts.

• solució ràpida + justificació: 10 punts.

Entenem com a solució lenta una que és correcta i capaç de superar els jocs de proves públics.
Entenemcoma solució ràpida una que és correcta i capaç de superar els jocs de proves públics
i privats. La justificació val 1 punt i consisteix en definir correctament les PRE/POST de les
funcions auxiliars que afegiu i en definir correctament les hipòtesis d’inducció i funcions de
fita.

Informació del problema
Autoria: PRO1

Generació: 2026-01-25T21:26:53.197Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

