
Jutge.org
The Virtual Learning Environment for Computer Programming

El Segundo Camino X77211_es

Sabemos calcular el camino de coste mínimo entre dos vértices cualquiera (si existe), en un
grafo dirigido etiquetado con números positivos, gracias al algoritmo deDijkstra, que todos
deberíamos conocer.
En este problema queremos calcular el coste del segundo camino de coste mínimo, de modo
que este camino no comparta ningúna arista con el camino de coste mínimo original, que se
ha calculado sin ninguna restricción.
Así pues, el problema es, dados:

• un grafo 𝐺 dirigido y etiquetado (con números enteros positivos),

• dos vértices 𝑠 y 𝑒,

Escribir una función segundo_mejor_camino(G,s,e) que calcule el coste del camino de
coste mínimo en 𝐺 entre 𝑠 y 𝑒, y que no pasa por ningúna arista del conjunto de aristas 𝐸𝑚𝑖𝑛
(donde 𝐸𝑚𝑖𝑛 es el conjunto de aristas del camino de coste mínimo en 𝐺 entre 𝑠 y 𝑒, calculado
sin ninguna restricción).

Precondición
𝐺 es un grafo dirigido y etiquetado con números enteros positivos. Si 𝑁 es el número de
vértices de 𝐺, 0 ≤ 𝑠 < 𝑁 y 0 ≤ 𝑒 < 𝑁

Entrada
La entrada al programa será el grafo 𝐺 y los vértices 𝑠 y 𝑒.
Primero tenemos un número 𝑛, que es el número de vértices del grafo (denominados, por
tanto, con los números 0 … (𝑛 − 1), seguido de un número 𝑚, que es el número de aristas
del grafo. A continuación tenemos 𝑚 grupos de tres números 𝑢, 𝑣, 𝑤, significando la arista
entre 𝑢 y 𝑣 con etiqueta 𝑤. Está claro que 0 ≤ 𝑢, 𝑣 < 𝑛, y que 𝑤 > 0. Por último tenemos dos
números 𝑠 y 𝑒, que son los vértices inicial y destino respectivamente, y 0 ≤ 𝑠, 𝑒 < 𝑛.
Véanse los ejemplos que forman el juego de pruebas público.

Observaciones
Se debe descargar el archivo code.py (icono de la serpiente). Este archivo es un programa
con todo lo necesario para ejecutar los juegos de prueba públicos. Sólo falta, claro, la función
que se pide en el enunciado. Este archivo debe completarse con el código que falta, y eso,
todo, es lo que se ha de enviar al Jutge como solución.
En el archivo code.py hay una versión modificada del algoritmo de Dijkstra. La modifi-
cación está pensada para hacer sencilla la solución a este problema. Está convenientemente
comentado, pero entender y saber utilizar esta versión modificada de Dijkstra forma parte
de la solución de éste problema.
También hay la función para leer grafos que ya se ha utilizado varias veces en las sesiones de
laboratorio. No hace falta, por tanto, preocuparse por leer la entrada. Ya está hecho.
La eficiencia y calidad de la solución se tendrán en cuenta en la corrección manual.



Ejemplo de entrada 1
5 7
0 1 2
0 2 5
1 2 1
1 3 4
2 3 2
2 4 3
3 4 2
0 4

Ejemplo de salida 1
9

Ejemplo de entrada 2
7 10
0 1 7
0 2 7
0 3 2
1 4 3
2 1 5
2 5 8
3 2 4
3 5 6
5 4 4
5 6 3
0 6

Ejemplo de salida 2
-1

Ejemplo de entrada 3
6 10
1 0 6
1 5 15
3 4 3
3 1 8
4 0 20
0 5 5
0 2 1
5 1 10
4 1 2
2 3 4
3 5

Ejemplo de salida 3
23

Ejemplo de entrada 4
2 1
0 1 1000
1 0

Ejemplo de salida 4
-1

Ejemplo de entrada 5
3 3
0 2 100
0 1 40
1 2 60
0 2

Ejemplo de salida 5
100



Información del problema
Autoría: Jordi Delgado

Generación: 2026-01-25T19:36:43.126Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

