
Jutge.org
The Virtual Learning Environment for Computer Programming

Piles quàntiques X76901_ca

En aquest exercicimodificarem la classeStack afegint dos nousmètodesentangle idisentangle
i canviant el comportament del mètode push com descrivim a continuació.
El noumètodeentangle rebrà un altreStack comaparàmetre. Una cridas0.entangle(s1)
provocarà que s0 quedi enllaçat a s1 de manera que, a partir de llavors, sempre que fem un
push sobre s0, l’element afegit al cim de s0 serà afegit també al cim de s1.
Aquest efecte no es propaga per una seqüència d’enllaços. Per exemple, si hem executat
s0.entangle(s1) is1.entangle(s2), executars0.push(value) afegirà tambévalue
al cim de s1, però això no es propagarà a afegir value al cim de s2.
Successius entangle sobre una mateixa pila fan que només l’últim estigui actiu. Per ex-
emple, si hem executat s0.entangle(s1) i després s0.entangle(s2), llavors s0 està
enllaçat a s2 però no a s1.
Una crida s0.disentangle() cancel.larà l’efecte de l’últim entangle actiu.
Fixeu-vos en aquest exemple per tal d’acabar d’entendre-ho:

Stack<int> s0, s1;
s0.push(1); // s0: 1
s0.push(2); // s0: 1,2
s1.push(3); // s1: 3
s1.push(4); // s1: 3,4
s0.entangle(s1);
s0.push(5); // s0: 1,2,5 s1: 3,4,5
s1.push(6); // s0: 1,2,5 s1: 3,4,5,6
s1.entangle(s0);
s0.push(7); // s0: 1,2,5,7 s1: 3,4,5,6,7
s1.push(8); // s0: 1,2,5,7,8 s1: 3,4,5,6,7,8
s0.disentangle();
s0.push(9); // s0: 1,2,5,7,8,9 s1: 3,4,5,6,7,8
s1.push(10); // s0: 1,2,5,7,8,9,10 s1: 3,4,5,6,7,8,10
s1.disentangle();
s0.push(11); // s0: 1,2,5,7,8,9,10,11 s1: 3,4,5,6,7,8,10
s1.push(12); // s0: 1,2,5,7,8,9,10,11 s1: 3,4,5,6,7,8,10,12

D’entre els fitxers que s’adjunten en aquest exercici, trobareu stack.hh, a on hi ha una
implementació de la classe genèrica Stack. Haureu d’implementar els dos nous mètodes
entangle i disentangle dins stack.hh a la part pública de la classe (podeu trobar les
capçaleres comentades dins stack.hh), i modificar el mètode push convenientment. Ne-
cessitareu també algun atribut addicional per tal de recordar si la pila té un entangle actiu
i amb qui, amb les convenients inicialitzacions.
D’entre els fitxers que s’adjunten a l’exercici també hi ha main.cc (programa principal), i
el podeu compilar directament, doncs inclou stack.hh. Només cal que pugeu stack.hh
al jutge.
Observació: En els jocs de proves no es copiaran piles. Per tant, no cal que adapteu els
mètodes que copien piles, de manera que no cal decidir si l’entanglement d’una pila s’hereta
sobre una còpia.

Entrada
L’entrada del programa comença amb una declaració d’unes quantes piles d’enters (s0,
s1, ...), i després té una seqüència de comandes sobre les piles declarades. Com que ja
us oferim elmain.cc, no cal que us preocupeud’implementar la lectura d’aquestes entrades.
Només cal que implementeu la extensió de la classe pila abans esmentada.
Podeu suposar que les comandes no faran coses extranyes, com un entangle d’una pila amb
sí mateixa. També podeu suposar que les comandes faran disentangles només sobre piles
que tinguin un entangle actiu. Però pot ser el cas que es faci un entangle sobre una pila que
ja tingui un entangle actiu. Com mencionavem abans, en aquestes situacions només l’últim
entangle aplica.

Sortida
Per a cada comandad’escriptura sobre la sortida s’escriurà el resultat corresponent. Elmain.cc
que us oferim ja fa això. Només cal que implementeu la extensió de la classe cua abans es-
mentada.

Exemple d’entrada 1
Stack<int> s0 , s1 ;
s0 .push(1);
s0 .push(2);
s1 .push(3);
s1 .push(4);
cout<< s0 <<endl;
cout<< s1 <<endl;
cout<< s0 .size()<<endl;
cout<< s1 .size()<<endl;
cout<< s0 .top()<<endl;
cout<< s1 .top()<<endl;
s0 .entangle(s1);
s0 .push(5);
s1 .push(6);
cout<< s0 <<endl;
cout<< s1 <<endl;
cout<< s0 .size()<<endl;
cout<< s1 .size()<<endl;
cout<< s0 .top()<<endl;
cout<< s1 .top()<<endl;
s1 .entangle(s0);
s0 .push(7);
s1 .push(8);
cout<< s0 <<endl;
cout<< s1 <<endl;
cout<< s0 .size()<<endl;
cout<< s1 .size()<<endl;
cout<< s0 .top()<<endl;
cout<< s1 .top()<<endl;
s0 .disentangle();
s0 .push(9);
s1 .push(10);
cout<< s0 <<endl;
cout<< s1 <<endl;
cout<< s0 .size()<<endl;
cout<< s1 .size()<<endl;
cout<< s0 .top()<<endl;
cout<< s1 .top()<<endl;

s1 .disentangle();
s0 .push(11);
s1 .push(12);
cout<< s0 <<endl;
cout<< s1 <<endl;
cout<< s0 .size()<<endl;
cout<< s1 .size()<<endl;
cout<< s0 .top()<<endl;
cout<< s1 .top()<<endl;

Exemple de sortida 1
2 1 2
2 3 4
2
2
2
4
3 1 2 5
4 3 4 5 6
3
4
5
6
5 1 2 5 7 8
6 3 4 5 6 7 8

5
6
8
8
7 1 2 5 7 8 9 10
7 3 4 5 6 7 8 10
7
7
10
10
8 1 2 5 7 8 9 10 11
8 3 4 5 6 7 8 10 12
8
8
11
12

Exemple d’entrada 2
Stack<int> s0 , s1 , s2 ;
s1 .push(-20);
s2 .push(-1);
cout<< s0 .size()<<endl;
s1 .push(7);
s2 .pop();
s2 .entangle(s0);
cout<< s0 <<endl;
s1 .pop();
s2 .push(0);
s2 .push(-15);
cout<< s1 .top()<<endl;
s1 .pop();
s0 .push(8);
s2 .disentangle();
s1 .push(7);
cout<< s1 .size()<<endl;
s0 .push(7);
s2 .push(18);
s2 .pop();
s0 .entangle(s2);
cout<< s1 .size()<<endl;
s2 .entangle(s1);
cout<< s2 .top()<<endl;
cout<< s1 .size()<<endl;
cout<< s0 <<endl;
s0 .push(-9);
s1 .entangle(s0);
s2 .push(9);
cout<< s0 <<endl;
cout<< s2 <<endl;
s2 .push(13);
s2 .disentangle();
s0 .pop();
s2 .pop();
s0 .pop();
s1 .push(-7);
cout<< s2 <<endl;
s1 .disentangle();
s1 .pop();
s0 .pop();
s0 .push(-14);

s1 .push(3);
s2 .pop();
cout<< s0 .top()<<endl;
s1 .push(16);
cout<< s2 .size()<<endl;
s1 .push(-11);
s1 .push(-20);
s0 .push(16);
s0 .pop();
s0 .push(-9);
s1 .push(-1);
cout<< s2 .size()<<endl;
s0 .disentangle();
s1 .entangle(s0);
s2 .push(13);
s2 .pop();
s0 .push(17);
cout<< s0 <<endl;
s2 .push(-5);
s0 .push(-8);
s1 .pop();
s0 .push(-19);
s2 .entangle(s0);
s2 .push(-12);
s1 .entangle(s2);
s1 .push(-8);
s2 .entangle(s0);
cout<< s1 .top()<<endl;
s1 .push(1);
s2 .push(-11);
s2 .entangle(s0);
cout<< s2 .size()<<endl;
s2 .push(-10);
cout<< s1 <<endl;
s2 .pop();
s1 .push(18);
s2 .push(6);
s1 .push(-2);
s0 .push(-20);
cout<< s0 <<endl;
cout<< s1 <<endl;
cout<< s2 <<endl;

Exemple de sortida 2
0
0
-20
1
1
-15
1
4 0 -15 8 7
5 0 -15 8 7 -9
4 0 -15 -9 9

4 0 -15 -9 9
-14
4
6
6 0 -15 8 -14 -9 17
-8
11
9 7 9 13 3 16 -11 -20 -8 1
13 0 -15 8 -14 -9 17 -8 -19 -12 -11 -10 6 -20
11 7 9 13 3 16 -11 -20 -8 1 18 -2
14 0 -15 -9 9 16 -9 -5 -12 -8 1 -11 18 6 -2

Observació
Avaluació sobre 10 punts:

• Solució lenta: 5 punts.

• solució ràpida: 10 punts.

Entenem com a solució ràpida una que és correcta, on totes les operacions tenen cost CON-
STANT (en part gràcies a que treballem amb piles d’enters), i capaç de superar els jocs de
proves públics i privats. Entenem com a solució lenta una que no és ràpida, però és correcta
i capaç de superar els jocs de proves públics.

Informació del problema
Autoria: PRO2

Generació: 2026-01-27T18:55:40.506Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

