
Jutge.org
The Virtual Learning Environment for Computer Programming

Construeix arbres i accedeix a posicions en postordre X73395_ca

Preliminars:
Preliminars: Recordeu que el recorregut en postordre d’un arbre és la llista dels nodes de
l’arbre ordenada com segueix: en primer lloc, el recorregut en postordre del fill esquerra de
l’arbre, després el recorregut en postordre del fill dret de l’arbre, i finalment l’arrel de l’arbre.
En altres paraules:

• 𝑃𝑜𝑠𝑡𝑜𝑟𝑑𝑟𝑒(𝑥(𝑡1, 𝑡2)) = 𝑃𝑜𝑠𝑡𝑜𝑟𝑑𝑟𝑒(𝑡1) ⋅ 𝑃𝑜𝑠𝑡𝑜𝑟𝑑𝑟𝑒(𝑡2) ⋅ 𝑥

• 𝑃𝑜𝑠𝑡𝑜𝑟𝑑𝑟𝑒(()) = (), és a dir, el postordre de l’arbre buit és l’arbre buit.

Donat un arbre de caràcters, el seu corresponent arbre de posicions en postordre és un ar-
bre d’enters amb exactament la mateixa estructura (conjunt de posicions), i a on cada node
guardarà la posició d’aquell node en el recorregut en postordre.

postorderTree(a) = 12
| |

---- ---- ---- ----
| | | |
b z 10 11
| |

------- ------- ------- -------
| | | |
e x 5 9
| | | |

---- ---- ---- ---- ---- ---- ---- ----
| | | | | | | |
p w b g 1 4 6 8

| | | |
---- ---- ---- ---- ---- ----

| | | | | |
a m e 2 3 7

En l’exemple anterior, fixeu-vos que el valor guardat en l’arbre original a posició en postordre
1 és ’p’, el valor guardat a posició en postordre 8 és ’g’, i el valor guardat a posició en postordre
12 és ’a’.
Fi de preliminars
En aquest exercici, heu d’implementar un programa que llegeix comandes que manipulen
variables que guarden àrbres binaris de caràcters. La primera comanda numvars= 𝑛 ; in-
dica el nombre total 𝑛 de variables. Els noms d’aquestes variables son t0,…,t(n-1), i se
suposa que inicialment cadascuna guarda un àrbre buit. Després venen comandes que con-
strueixen nous àrbres a partir de variables i els assignen a variables (com per exemple t2
=BinTree(a , t0 , t1);, i comandes que accedeixen als fills d’un arbre existent i
els assignen a variables (com per exemple t3 = t2 .left(); o t3 = t2 .right();).
També hi ha comandes per a escriure per la sortida un àrbre en INLINEFORMAT (com per ex-
emple cout<< t2 <<endl;), i comandes per a escriure el valor guardat en un arbre a una
posició en postordre donada (com per exemple cout<<valueAtPostorderPosition(
t2 , 3)<<endl;

Aquest és un exemple d’entrada del programa:

numvars= 4 ;
t1 =BinTree(a , t2 , t3);
t2 =BinTree(b , t1 , t3);
t3 =BinTree(c , t2 , t1);
cout<< t0 <<endl;
cout<< t1 <<endl;
cout<< t2 <<endl;
cout<< t3 <<endl;
cout<<valueAtPostorderPosition(t1 , 1)<<endl;
cout<<valueAtPostorderPosition(t2 , 1)<<endl;
cout<<valueAtPostorderPosition(t2 , 2)<<endl;
cout<<valueAtPostorderPosition(t3 , 1)<<endl;
cout<<valueAtPostorderPosition(t3 , 2)<<endl;
cout<<valueAtPostorderPosition(t3 , 3)<<endl;
cout<<valueAtPostorderPosition(t3 , 4)<<endl;
t1 =BinTree(d , t2 , t3);
t2 =BinTree(e , t1 , t3);
t3 =BinTree(f , t2 , t1);
cout<< t1 <<endl;
cout<< t2 <<endl;
cout<< t3 <<endl;
cout<<valueAtPostorderPosition(t1 , 1)<<endl;
cout<<valueAtPostorderPosition(t1 , 2)<<endl;
cout<<valueAtPostorderPosition(t1 , 3)<<endl;
cout<<valueAtPostorderPosition(t1 , 4)<<endl;
cout<<valueAtPostorderPosition(t2 , 3)<<endl;
cout<<valueAtPostorderPosition(t2 , 4)<<endl;
cout<<valueAtPostorderPosition(t2 , 8)<<endl;
cout<<valueAtPostorderPosition(t2 , 9)<<endl;
cout<<valueAtPostorderPosition(t3 , 8)<<endl;
cout<<valueAtPostorderPosition(t3 , 13)<<endl;
cout<<valueAtPostorderPosition(t3 , 16)<<endl;
cout<<valueAtPostorderPosition(t3 , 18)<<endl;
t1 = t3 .left();
t2 = t1 .right();
t3 = t2 .left();
cout<< t1 <<endl;
cout<< t2 <<endl;
cout<< t3 <<endl;
cout<<valueAtPostorderPosition(t1 , 3)<<endl;
cout<<valueAtPostorderPosition(t1 , 4)<<endl;
cout<<valueAtPostorderPosition(t1 , 8)<<endl;
cout<<valueAtPostorderPosition(t1 , 9)<<endl;
cout<<valueAtPostorderPosition(t2 , 1)<<endl;
cout<<valueAtPostorderPosition(t2 , 2)<<endl;
cout<<valueAtPostorderPosition(t2 , 3)<<endl;
cout<<valueAtPostorderPosition(t2 , 4)<<endl;
cout<<valueAtPostorderPosition(t3 , 1)<<endl;

cout<<valueAtPostorderPosition(t3 , 2)<<endl;

La sortida del programa amb la seqüència de comandes d’entrada anterior hauria de ser:

()
a
b(a,)
c(b(a,),a)
a
a
b
a
b
a
c
d(b(a,),c(b(a,),a))
e(d(b(a,),c(b(a,),a)),c(b(a,),a))
f(e(d(b(a,),c(b(a,),a)),c(b(a,),a)),d(b(a,),c(b(a,),a)))
a
b
a
b
a
c
d
a
b
c
d
c
e
a
b
c
d
c
e
c
d
f
e(d(b(a,),c(b(a,),a)),c(b(a,),a))
c(b(a,),a)
b(a,)
a
b
c
d
c
e
a

b
a
c
a
b

Com podeu observar a l’exemple d’entrada anterior, hi han espais en blanc per a facilitar la
lectura.
GUIAPERAOBTENIRUNASOLUCIÓ INEFICIENTQUESUPERIELS JOCSDEPROVES
PÚBLICS
A continuació us posem una guia per a obtenir una solució lenta. Aquesta us permetrà su-
perar els jocs de proves públics però no els privats, obtenint així la meitat de la nota. Per tal
d’obtenir una solució ràpida, haureu de repensar el programa, quines dades convémantenir,
i com fer-les servir.
Per a obtenir una solució lenta, n’hi ha prou amb guardar un vector de BinTree t[0...numvars-
1] sobre el qual es guarden els àrbres que es van calculant. Totes les comandes es transformen
en crides directes a mètodes de BinTree excepte valueAtPostorderPosition, per a la
cual caldrà implementar una funció, amb el mateix nom, que rebi un arbre i un enter que
representa una posició en postordre, i retorni el valor de l’arbre en aquella posició.
Podeuutilitzar la plantilla següent, a onnomés himanca implementar la funciógetValueAtPostorderPosition.

#include <iostream>
#include <string>
#include <cstdlib>
#include <vector>
// Add more includes if you wish ...

using namespace std;

#include "BinTree.hh"

typedef BinTree<char> BT;

int getIdVar(string s)
{

return atoi(s.substr(1).c_str());
}

// Add auxiliary functions if you wish ...

char getValueAtPostorderPosition(BT t, int pos)
{

// Implement this function ...
}

int main()
{

string s1, s2, s3, s4, s5, s6, s7;
int numvars;
cin >> s1 >> numvars >> s2;

vector<BT> t(numvars);
while (cin >> s1 >> s2) {

if (s1[0] == 't') {
int idvar = getIdVar(s1);
if (s2 == "=BinTree(") {

char value;
cin >> value >> s3 >> s4 >> s5 >> s6 >> s7;
int idvar1 = getIdVar(s4);
int idvar2 = getIdVar(s6);
t[idvar] = BT(value, t[idvar1], t[idvar2]);

} else if (s2 == "=") {
cin >> s3 >> s4;
int idvar1 = getIdVar(s3);
if (s4 == ".left();") {

t[idvar] = t[idvar1].left();
} else {

t[idvar] = t[idvar1].right();
}

}
} else if (s1 == "cout<<") {

int idvar = getIdVar(s2);
cin >> s3;
t[idvar].setOutputFormat(BinTree<int>::INLINEFORMAT);
cout << t[idvar] << endl;

} else if (s1 == "cout<<valueAtPostorderPosition(") {
int idvar = getIdVar(s2);
int pos;
cin >> s3 >> pos >> s4;
cout << getValueAtPostorderPosition(t[idvar], pos) << endl;

} else {
cout << "Error: unexpected command '" << s1 << "'" << endl;
exit(1);

}
}

}

Fixeu-vos que l’enunciat d’aquest exercici us ofereix el fitxer BinTree.hh. Us falta crear el
fitxer main.cc, que podeu construïr, si voleu, a partir de la plantilla que us hem oferit abans.
Només cal que pugeu main.cc al jutge.
Observació: Com us hem mencionat abans, la guia y el programa que us oferim com a
plantilla indica com obtenir una solució lenta. Els arbres dels jocs de proves privats son
molt grans, i això fa que, encara que implementeumolt bévalueAtPostorderPosition,
s’obtingui temps límit excedit. Tot i així, els arbres dels jocs de proves privats tenen poca
profunditat (doncs son bastant equilibrats). Per tant, cal repensar el programa i seguir
un enfocament que faci que resoldre les comandes valueAtPostorderPosition tingui
cost proporcional a com a molt la profunditat de l’arbre.

Entrada
La primera linia de l’entrada és de la forma numvars= LIMIT ;, a on LIMIT és un nombre
natural positiu. Després venen instruccions d’aquestes menes:

tNUM =BinTree(VALUE , tNUM1 , tNUM2);
tNUM1 = tNUM2 .left();
tNUM1 = tNUM2 .right();
cout<< tNUM <<endl;
cout<<valueAtPostorderPosition(tNUM , POSTORDERINDEX)<<endl;

On VALUE es una lletra minúscula, NUM, NUM1, NUM2 son naturals en el rang {0,…,LIMIT-
1}, i POSTORDERINDEX és un natural entre 1 i el nombre de nodes de l’arbre guardat en la
variable que l’acompanya en la crida a valueAtPostorderPosition.
Se suposa que les entrades son correctes. En particular, sempre es demana accedir a left o
right d’arbres no buits.

Sortida
Per a cada instrucció dels següents dos tipus, el vostre programa ha d’escriure el resultat
esperat (l’arbre contingut en la variable en INLINEFORMAT, o el valor guardat per l’arbre
contingut en la variable en la posició indicada per l’índex en postordre, segons el cas).

cout<< tNUM <<endl;
cout<<valueAtPostorderPosition(tNUM , POSTORDERINDEX)<<endl;

Exemple d’entrada 1
numvars= 4 ;
t1 =BinTree(a , t2 , t3);
t2 =BinTree(b , t1 , t3);
t3 =BinTree(c , t2 , t1);
cout<< t0 <<endl;
cout<< t1 <<endl;
cout<< t2 <<endl;
cout<< t3 <<endl;
cout<<valueAtPostorderPosition(t1 , 1)<<endl;
cout<<valueAtPostorderPosition(t2 , 1)<<endl;
cout<<valueAtPostorderPosition(t2 , 2)<<endl;
cout<<valueAtPostorderPosition(t3 , 1)<<endl;
cout<<valueAtPostorderPosition(t3 , 2)<<endl;
cout<<valueAtPostorderPosition(t3 , 3)<<endl;
cout<<valueAtPostorderPosition(t3 , 4)<<endl;
t1 =BinTree(d , t2 , t3);
t2 =BinTree(e , t1 , t3);
t3 =BinTree(f , t2 , t1);
cout<< t1 <<endl;
cout<< t2 <<endl;
cout<< t3 <<endl;
cout<<valueAtPostorderPosition(t1 , 1)<<endl;
cout<<valueAtPostorderPosition(t1 , 2)<<endl;
cout<<valueAtPostorderPosition(t1 , 3)<<endl;
cout<<valueAtPostorderPosition(t1 , 4)<<endl;
cout<<valueAtPostorderPosition(t1 , 5)<<endl;
cout<<valueAtPostorderPosition(t1 , 6)<<endl;
cout<<valueAtPostorderPosition(t1 , 7)<<endl;
cout<<valueAtPostorderPosition(t2 , 3)<<endl;

cout<<valueAtPostorderPosition(t2 , 4)<<endl;
cout<<valueAtPostorderPosition(t2 , 6)<<endl;
cout<<valueAtPostorderPosition(t2 , 7)<<endl;
cout<<valueAtPostorderPosition(t2 , 11)<<endl;
cout<<valueAtPostorderPosition(t2 , 12)<<endl;
cout<<valueAtPostorderPosition(t3 , 3)<<endl;
cout<<valueAtPostorderPosition(t3 , 4)<<endl;
cout<<valueAtPostorderPosition(t3 , 6)<<endl;
cout<<valueAtPostorderPosition(t3 , 7)<<endl;
cout<<valueAtPostorderPosition(t3 , 11)<<endl;
cout<<valueAtPostorderPosition(t3 , 12)<<endl;
cout<<valueAtPostorderPosition(t3 , 18)<<endl;
cout<<valueAtPostorderPosition(t3 , 19)<<endl;
cout<<valueAtPostorderPosition(t3 , 20)<<endl;
t1 = t3 .left();
t2 = t1 .right();
t3 = t2 .left();
cout<< t1 <<endl;
cout<< t2 <<endl;
cout<< t3 <<endl;
cout<<valueAtPostorderPosition(t1 , 3)<<endl;
cout<<valueAtPostorderPosition(t1 , 4)<<endl;
cout<<valueAtPostorderPosition(t1 , 6)<<endl;
cout<<valueAtPostorderPosition(t1 , 7)<<endl;
cout<<valueAtPostorderPosition(t1 , 11)<<endl;
cout<<valueAtPostorderPosition(t1 , 12)<<endl;
cout<<valueAtPostorderPosition(t2 , 1)<<endl;
cout<<valueAtPostorderPosition(t2 , 2)<<endl;
cout<<valueAtPostorderPosition(t2 , 3)<<endl;
cout<<valueAtPostorderPosition(t2 , 4)<<endl;
cout<<valueAtPostorderPosition(t3 , 1)<<endl;

cout<<valueAtPostorderPosition(t3 , 2)<<endl;Exemple de sortida 1
()
a
b(a,)
c(b(a,),a)
a
a
b
a
b
a
c
d(b(a,),c(b(a,),a))
e(d(b(a,),c(b(a,),a)),c(b(a,),a))
f(e(d(b(a,),c(b(a,),a)),c(b(a,),a)),d(b(a,),c(b(a,),a)))
a
b
a
b
a
c
d
a
b
c
d
c
e
a
b
c
d
c
e
c
d
f
e(d(b(a,),c(b(a,),a)),c(b(a,),a))
c(b(a,),a)
b(a,)
a
b
c
d
c
e
a
b
a
c
a
b

Exemple d’entrada 2
numvars= 5 ;
cout<< t1 <<endl;
cout<< t0 <<endl;
t1 =BinTree(b , t2 , t4);
t2 =BinTree(c , t0 , t4);

cout<<valueAtPostorderPosition(t1 , 1)<<endl;
t1 = t2 .left();
t3 =BinTree(h , t2 , t4);
t2 =BinTree(s , t3 , t2);
t4 = t2 .right();
t3 = t4 .right();
t4 =BinTree(y , t3 , t1);

t2 =BinTree(e , t3 , t4);
t1 =BinTree(e , t3 , t2);
cout<< t1 <<endl;
t2 =BinTree(k , t1 , t0);
t4 =BinTree(f , t4 , t3);
t3 =BinTree(c , t4 , t3);
t4 = t4 .right();
cout<< t0 <<endl;
t1 =BinTree(q , t4 , t4);
cout<<valueAtPostorderPosition(t3 , 3)<<endl;
cout<< t1 <<endl;
t0 =BinTree(d , t1 , t1);
cout<< t4 <<endl;
t1 = t2 .right();
cout<< t1 <<endl;
cout<< t1 <<endl;
t4 =BinTree(j , t3 , t1);
cout<< t4 <<endl;
t4 = t0 .right();
cout<< t3 <<endl;
cout<<valueAtPostorderPosition(t0 , 3)<<endl;
t0 =BinTree(u , t1 , t1);
cout<<valueAtPostorderPosition(t0 , 1)<<endl;
t3 = t4 .right();
t4 = t4 .left();
cout<< t4 <<endl;
t2 =BinTree(x , t0 , t3);
t3 =BinTree(i , t1 , t3);
t4 =BinTree(a , t3 , t3);
cout<< t3 <<endl;
t4 =BinTree(c , t3 , t3);
t2 =BinTree(n , t2 , t1);
cout<<valueAtPostorderPosition(t3 , 1)<<endl;
cout<<valueAtPostorderPosition(t3 , 1)<<endl;
t2 =BinTree(d , t0 , t4);
cout<< t0 <<endl;
t1 =BinTree(i , t4 , t2);
t4 = t2 .right();
t1 =BinTree(d , t0 , t3);
t1 =BinTree(w , t4 , t1);
t3 =BinTree(p , t1 , t2);
t2 =BinTree(s , t2 , t4);
cout<<valueAtPostorderPosition(t1 , 7)<<endl;
t1 =BinTree(n , t1 , t0);
t4 = t0 .left();
cout<< t1 <<endl;
cout<< t4 <<endl;
cout<<valueAtPostorderPosition(t2 , 9)<<endl;
t2 =BinTree(k , t4 , t4);
cout<<valueAtPostorderPosition(t3 , 13)<<endl;
cout<< t1 <<endl;
t1 = t0 .left();
t3 =BinTree(d , t2 , t0);
t3 = t0 .right();
cout<<valueAtPostorderPosition(t2 , 1)<<endl;
t2 =BinTree(u , t2 , t2);
cout<< t0 <<endl;
t4 =BinTree(u , t0 , t2);
cout<< t3 <<endl;
t0 = t4 .right();
cout<< t0 <<endl;

cout<< t4 <<endl;
t3 =BinTree(x , t1 , t0);
t2 =BinTree(i , t4 , t4);
cout<< t0 <<endl;
cout<<valueAtPostorderPosition(t2 , 11)<<endl;
t1 =BinTree(h , t4 , t1);
t4 = t2 .left();
cout<<valueAtPostorderPosition(t1 , 6)<<endl;
cout<< t0 <<endl;
cout<< t1 <<endl;
cout<< t2 <<endl;
cout<< t3 <<endl;
cout<< t4 <<endl;

Exemple de sortida 2
()
()
b
e(,e(,y))
()
c
q
()
()
()
j(c(f(y,),),)
c(f(y,),)
d
u
()
i
i
i

u
w
n(w(c(i,i),d(u,i)),u)
()
s
p
n(w(c(i,i),d(u,i)),u)
k
u
()
u(k,k)
u(u,u(k,k))
u(k,k)
i
h
u(k,k)
h(u(u,u(k,k)),)
i(u(u,u(k,k)),u(u,u(k,k)))
x(,u(k,k))
u(u,u(k,k))

Exemple d’entrada 3
numvars= 10 ;
t7 =BinTree(w , t5 , t3);
cout<< t6 <<endl;
t1 =BinTree(b , t2 , t7);
t3 =BinTree(r , t6 , t0);
cout<< t2 <<endl;
cout<< t1 <<endl;
t2 =BinTree(s , t3 , t7);
cout<< t9 <<endl;
t8 =BinTree(o , t9 , t7);
t1 =BinTree(s , t2 , t9);
t9 =BinTree(d , t4 , t7);
t6 =BinTree(b , t1 , t0);
cout<< t3 <<endl;
t6 =BinTree(g , t1 , t5);
cout<< t4 <<endl;
cout<<valueAtPostorderPosition(t6 , 5)<<endl;
cout<< t6 <<endl;
t3 = t7 .right();
t2 =BinTree(p , t5 , t4);
t0 =BinTree(h , t7 , t8);
cout<< t8 <<endl;
t9 =BinTree(w , t2 , t0);
cout<< t8 <<endl;
t2 = t6 .right();
cout<< t4 <<endl;
t5 = t0 .right();
t7 =BinTree(c , t1 , t7);
t2 =BinTree(v , t2 , t6);
t6 =BinTree(k , t1 , t5);
t4 = t9 .right();
t1 =BinTree(v , t7 , t7);
t5 =BinTree(l , t9 , t7);
cout<<valueAtPostorderPosition(t6 , 7)<<endl;
cout<< t5 <<endl;
cout<< t3 <<endl;
t4 = t8 .right();
t9 =BinTree(a , t3 , t9);

t5 = t6 .left();
t1 =BinTree(q , t0 , t3);
t4 =BinTree(c , t4 , t4);
cout<<valueAtPostorderPosition(t6 , 7)<<endl;
cout<< t2 <<endl;
t8 =BinTree(n , t5 , t7);
cout<<valueAtPostorderPosition(t5 , 4)<<endl;
t8 =BinTree(k , t3 , t1);
t9 = t6 .left();
cout<< t0 <<endl;
cout<<valueAtPostorderPosition(t7 , 6)<<endl;
cout<< t4 <<endl;
t3 =BinTree(g , t0 , t9);
t4 =BinTree(f , t0 , t5);
t4 = t6 .right();
t2 = t2 .right();
t7 =BinTree(t , t5 , t4);
t1 = t2 .left();
t9 = t3 .left();
cout<< t8 <<endl;
t1 =BinTree(o , t0 , t5);
t4 =BinTree(c , t6 , t2);
cout<< t8 <<endl;
cout<< t2 <<endl;
t4 = t7 .left();
t0 =BinTree(a , t6 , t2);
t9 = t0 .right();
t1 = t3 .left();
t0 =BinTree(l , t3 , t4);
t9 =BinTree(p , t1 , t9);
cout<< t9 <<endl;
cout<< t6 <<endl;
t0 =BinTree(u , t4 , t6);
t7 =BinTree(c , t5 , t6);
t8 = t7 .right();
cout<< t0 <<endl;
t6 =BinTree(h , t1 , t3);
cout<<valueAtPostorderPosition(t5 , 4)<<endl;
t7 = t0 .left();

t0 =BinTree(w , t4 , t2);
t6 = t1 .right();
t2 =BinTree(u , t2 , t2);
t8 =BinTree(m , t3 , t8);
t6 = t2 .right();
cout<< t4 <<endl;
t9 =BinTree(j , t3 , t6);
t5 =BinTree(z , t1 , t7);
t1 =BinTree(h , t4 , t6);
t4 = t2 .right();
t8 = t9 .left();
t8 =BinTree(e , t8 , t6);
t3 = t8 .left();
t3 =BinTree(p , t3 , t7);
cout<< t5 <<endl;
t7 = t9 .left();
cout<< t0 <<endl;
cout<<valueAtPostorderPosition(t0 , 10)<<endl;
t6 = t2 .left();
cout<<valueAtPostorderPosition(t8 , 15)<<endl;
t1 = t5 .right();
t2 =BinTree(d , t5 , t7);
t9 =BinTree(n , t4 , t5);
t3 = t5 .right();
cout<<valueAtPostorderPosition(t0 , 10)<<endl;
t1 = t9 .left();
t7 = t8 .right();
cout<< t2 <<endl;
t0 =BinTree(q , t7 , t3);
cout<< t7 <<endl;
cout<<valueAtPostorderPosition(t4 , 5)<<endl;
t4 =BinTree(y , t7 , t4);
t5 = t8 .left();
t0 =BinTree(s , t6 , t6);
cout<< t0 <<endl;
cout<<valueAtPostorderPosition(t0 , 11)<<endl;
t1 =BinTree(y , t3 , t7);
cout<<valueAtPostorderPosition(t2 , 19)<<endl;
cout<< t4 <<endl;
cout<< t2 <<endl;
t4 = t5 .right();
t6 = t0 .left();
t7 = t5 .right();
t7 = t8 .right();
cout<< t3 <<endl;
t8 =BinTree(t , t7 , t4);
t5 = t8 .left();
t0 = t9 .left();
cout<<valueAtPostorderPosition(t9 , 15)<<endl;
t3 = t2 .right();
cout<< t1 <<endl;
cout<<valueAtPostorderPosition(t4 , 4)<<endl;
cout<<valueAtPostorderPosition(t0 , 5)<<endl;
cout<< t6 <<endl;
t9 =BinTree(j , t6 , t4);
t0 = t8 .left();
cout<<valueAtPostorderPosition(t5 , 5)<<endl;
cout<< t4 <<endl;
cout<< t3 <<endl;
cout<<valueAtPostorderPosition(t9 , 10)<<endl;
cout<<valueAtPostorderPosition(t4 , 4)<<endl;

t1 = t7 .right();
t4 =BinTree(z , t1 , t5);
t8 = t3 .right();
t5 = t2 .left();
t7 =BinTree(u , t0 , t3);
t3 =BinTree(o , t6 , t3);
cout<<valueAtPostorderPosition(t2 , 19)<<endl;
cout<< t8 <<endl;
t0 = t2 .right();
cout<< t1 <<endl;
cout<< t0 <<endl;
t0 = t4 .left();
t1 =BinTree(k , t5 , t0);
t3 = t5 .left();
cout<< t5 <<endl;
cout<<valueAtPostorderPosition(t6 , 5)<<endl;
t5 =BinTree(o , t0 , t8);
t7 =BinTree(r , t0 , t0);
t8 =BinTree(h , t6 , t0);
t9 = t2 .left();
cout<< t9 <<endl;
t1 = t3 .left();
cout<< t7 <<endl;
t9 =BinTree(p , t6 , t0);
cout<< t4 <<endl;
t9 = t3 .left();
t8 =BinTree(k , t9 , t6);
cout<<valueAtPostorderPosition(t7 , 1)<<endl;
t0 =BinTree(d , t9 , t0);
t1 =BinTree(g , t3 , t7);
t1 =BinTree(x , t3 , t0);
t1 =BinTree(i , t7 , t5);
cout<< t5 <<endl;
t1 =BinTree(y , t6 , t5);
cout<<valueAtPostorderPosition(t8 , 7)<<endl;
cout<< t9 <<endl;
cout<<valueAtPostorderPosition(t9 , 1)<<endl;
cout<<valueAtPostorderPosition(t2 , 19)<<endl;
t6 =BinTree(t , t3 , t0);
t5 =BinTree(x , t6 , t5);
cout<< t0 <<endl;
cout<<valueAtPostorderPosition(t8 , 7)<<endl;
cout<< t5 <<endl;
t7 =BinTree(e , t7 , t7);
cout<< t9 <<endl;
t8 = t8 .right();
t7 =BinTree(p , t0 , t6);
t2 = t1 .right();
cout<<valueAtPostorderPosition(t7 , 10)<<endl;
t7 = t6 .right();
t4 = t5 .left();
cout<< t5 <<endl;
cout<< t8 <<endl;
t8 =BinTree(s , t3 , t8);
cout<<valueAtPostorderPosition(t5 , 13)<<endl;
cout<<valueAtPostorderPosition(t3 , 4)<<endl;
cout<< t7 <<endl;
cout<< t2 <<endl;
t2 =BinTree(u , t9 , t7);
cout<<valueAtPostorderPosition(t7 , 2)<<endl;
t8 = t1 .right();

cout<<valueAtPostorderPosition(t1 , 11)<<endl;
t2 =BinTree(d , t0 , t6);
cout<< t0 <<endl;
cout<< t1 <<endl;
cout<< t2 <<endl;
cout<< t3 <<endl;
cout<< t4 <<endl;
cout<< t5 <<endl;
cout<< t6 <<endl;
cout<< t7 <<endl;
cout<< t8 <<endl;
cout<< t9 <<endl;

Exemple de sortida 3
()
()
b(,w)
()
r
()
g
g(s(s(r,w),),)
o(,w)
o(,w)
()
k
l(w(p,h(w,o(,w))),c(s(s(r,w),),w))
()
k
v(,g(s(s(r,w),),))
s
h(w,o(,w))
c
c(w,w)
k(,q(h(w,o(,w)),))
k(,q(h(w,o(,w)),))
g(s(s(r,w),),)
p(h(w,o(,w)),g(s(s(r,w),),))
k(s(s(r,w),),o(,w))
u(s(s(r,w),),k(s(s(r,w),),o(,w)))
s
s(s(r,w),)
z(h(w,o(,w)),s(s(r,w),))
w(s(s(r,w),),g(s(s(r,w),),))
w
e
w
d(z(h(w,o(,w)),s(s(r,w),)),g(h(w,o(,w)),s(s(r,w),)))
g(s(s(r,w),),)
g
s(g(s(s(r,w),),),g(s(s(r,w),),))
s
d
y(g(s(s(r,w),),),g(s(s(r,w),),))
d(z(h(w,o(,w)),s(s(r,w),)),g(h(w,o(,w)),s(s(r,w),)))
s(s(r,w),)
n
y(s(s(r,w),),g(s(s(r,w),),))
s
g
g(s(s(r,w),),)
g
s(s(r,w),)
g(h(w,o(,w)),s(s(r,w),))
j
s
d
s(s(r,w),)
()
g(h(w,o(,w)),s(s(r,w),))
z(h(w,o(,w)),s(s(r,w),))
g
z(h(w,o(,w)),s(s(r,w),))

r
z(,g(s(s(r,w),),))
r
o(,s(s(r,w),))
k
w
w
d
d(w,)
k
x(t(h(w,o(,w)),d(w,)),o(,s(s(r,w),)))
w
p
x(t(h(w,o(,w)),d(w,)),o(,s(s(r,w),)))
g(s(s(r,w),),)
x

h
d(w,)
o(,s(s(r,w),))
d
y
d(w,)
y(g(s(s(r,w),),),o(,s(s(r,w),)))
d(d(w,),t(h(w,o(,w)),d(w,)))
h(w,o(,w))
t(h(w,o(,w)),d(w,))
x(t(h(w,o(,w)),d(w,)),o(,s(s(r,w),)))
t(h(w,o(,w)),d(w,))
d(w,)
o(,s(s(r,w),))
w

Observació
Podeu seguir l’enfocament que considereu oportú, i podeu utilitzar qualsevol de les estruc-
tures de dades presentades al curs (string, vector, stack, queue, list, map) com a element de
suport, si ho considereu oportú. De totes maneres, BinTree ha de jugar un paper rellevant
en la vostra solució. Qualsevol solució que ignori això i faci servir enfocaments o estructures
de dades alternatives que no formen part de l’assignatura serà invalidada.
Avaluació sobre 10 punts:

• Solució lenta: 5 punts.

• solució ràpida: 10 punts.

Entenem com a solució ràpida una que és correcta, on cada operació té cost CONSTANT
(excepte per a la d’escriptura d’arbres, a on s’espera cost proporcional a la mida de l’arbre
involucrat, i a la d’escriptura del valor a posició en postordre, a on s’espera cost proporcional
a la profunditat d’aquella posició en l’arbre involucrat), i capaç de superar els jocs de proves
públics i privats. Entenem com a solució lenta una que no és ràpida, però és correcta i capaç
de superar els jocs de proves públics.

Informació del problema
Autoria: PRO2

Generació: 2026-01-25T21:24:27.371Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

