
Jutge.org
The Virtual Learning Environment for Computer Programming

Cerca en un BST (arbre de cerca binària) X70970_ca

Implementeu una funció RECURSIVA que, donat un arbre binari de cerca (BST) d’enters t,
i un valor x, retorna un booleà indicant si x apareix a l’arbre. Aquesta és la capcelera:

// Pre: t és un BST
// Post: Retorna cert si i només si x apareix a t
bool searchInBST(BinaryTree<int> &t, int x);

Recordeu que un BST és un arbre a on cada subarbre no buit 𝑟(𝑡0, 𝑡1) cumpleix que l’arrel 𝑟
és major estricte que tots els valors que apareixen en el seu subarbre esquerre 𝑡0, i 𝑟 és menor
estricte que tots els valors que apareixen en el seu subarbre dret 𝑡1. La gràcia dels BST és que,
per a trobar si un cert element hi apareix, ho podem fer més ràpid aprofitant el fet que els
seus elements cumpleixen aquesta propietat d’ordenació. Tingueu en compte que els jocs de
proves consistiran en arbres bastant equilibrats, així que valdrà la pena que feu això.
Aquí tenim un exemple de paràmetres d’entrada de la funció i la corresponent sortida:

t: 3(1(,2),5(4,))
x: 2
=>
true

Fixeu-vos que l’enunciat d’aquest exercici ja ofereix uns fitxers que haureu d’utilitzar per a
compilar: Makefile, program.cpp, BinaryTree.hpp, searchInBST.hpp. Us falta
crear el fitxer searchInBST.cpp amb els corresponents includes i implementar-hi la fun-
ció anterior. Quan pugeu la vostra solució al jutge, només cal que pugeu un tar construït així:

tar cf solution.tar searchInBST.cpp

Entrada
L’entrada té una primera línea amb un string describint un BST d’enters.
Després segueixen un nombre arbitrari de casos. Cada cas consisteix en una línia amb un
enter x. Fixeu-vos en que el programa que us oferim ja s’encarrega de llegir aquesta entrada.
Només cal que implementeu la funció abans esmentada.

Sortida
Per a cada cas, la sortida conté la corresponent indicació de si l’element pertany a l’arbre o
no. Fixeu-vos en que el programa que us oferim ja s’encarrega d’escriure aquesta sortida.
Només cal que implementeu la funció abans esmentada.

Exemple d’entrada 1
8(7(4(0,5),),24(15(10(9,12),17(16,18)),28(25,)))
0
3
2

4
26
16
11
3
3



7
12
22
15
27
28
24
2
23
4
13

Exemple de sortida 1
Exists
Do not exist
Do not exist
Exists
Do not exist
Exists
Do not exist
Do not exist
Do not exist
Exists
Exists
Do not exist
Exists
Do not exist
Exists
Exists
Do not exist
Do not exist
Exists
Do not exist

Exemple d’entrada 2
-7(-8(-11(-15,-10),),9(0(-5(-6,-3),2(1,3)),13(10,)))
-15
-12
-13
-11
11
1
-4
-12
-12
-8
-3
7
0
12
13
9
-13
8
-11
-2

Exemple de sortida 2
Exists
Do not exist
Do not exist
Exists
Do not exist
Exists
Do not exist
Do not exist
Do not exist
Exists
Exists
Do not exist
Exists
Do not exist
Exists
Exists
Do not exist
Do not exist
Exists
Do not exist

Observació
La vostra funció i subfuncions que creeu han de treballar només amb arbres. Heu de tro-
bar una solució RECURSIVA del problema. En les crides recursives, incloeu la hipòtesi
d’inducció, és a dir una explicació del que es cumpleix després de la crida, i també la funció
de fita/decreixement o una justificació de perquè la funció recursiva acaba.

Informació del problema
Autoria: PRO1

Generació: 2026-01-25T21:23:14.875Z



© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

