Jutge.org

The Virtual Learning Environment for Computer Programming

Classe diccionari (I) X68607_ca

Cal implementar la segiient classe dicc que ens permet representar i manipular diccionaris,
on les claus que identifiquen els elements sén del tipus Clau que admet una relacié d’ordre
total, és a dir, tenim una operacié de comparacié < entre claus:

#include <iostream>
using namespace std;

template <typename Clau>
class dicc {

public:
// Constructora per defecte. Crea un diccionari buit.
dicc ();

// Les tres grans: Constructora per copia, destructora, operador d’assignacié
dicc (const dicc &d);

~dicc ();

dicc & operator=(const dicc &d);

// Insereix la clau k en el diccionari. Si ja hi era, no fa res.
void insereix (const Clau &k);

// Elimina la clau k del diccionari. Sino hi era, no fa res.
void elimina(const Clau &k);

// Consulta si la clau k esta en el diccionari.
bool consulta(const Clau &k) const;

// Retorna quants elements (claus) té el diccionari.
nat quants() const;

// Impressi6 per cout de claus del diccionari en ordre ascendent, separades per
// un espai, comengant per ’[” i acabant per '], en dues versions:

// Imprimeix totes les claus

void print () const;

// Imprimeix les claus entre k1 i k2 ambdés incloses. Pre: k1 <= k2

void print_interval (const Clau &k1, const Clau &k2) const;

// Retorna la clau més petita i la més gran respectivament.
// Pre: El diccionari no esta buit

Clau min() const;

Clau max() const;

// Retorna la clau de la posici6 i-éssima (comptant-les en ordre ascendent).
// Pre: El diccionari no esta buit. 1 <= i <= quants()



Clau iessim (nat i) const;

private:
// Aqui van els atributs i métodes privats

Iy
// Aqui va la implementacié dels metodes publics i privats

Basicament el que cal fer és:

1. Trobar una representaci6é adequada pels objectes de la classe i escriure els atributs nec-
essaris en la part private.

2. Implementar tots els metodes de la classe els quals manipularan la representacié ante-
rior.

Degut a que jutge.org només permet I’enviament d"un fitxer amb la solucié del problema, en
el mateix fitxer hi ha d’haver I'especificacié i 'implementacié de la classe (el que normalment
estarien separats en els fitxers .hipp i .cpp).

Per testejar la classe disposeu d'un programa principal que processa blocs que contenen un
diccionari amb claus enteres i varies comandes que el manipula.

Entrada

L'entrada conté varis blocs separats per linies amb 10 guions (————). Cada bloc consisteix
en una linia que conté una seqiiencies d’enters, sén els elements que tindra originalment el
diccionari. A continuacié segueixen varies comandes, una per linea, amb el segtient format
(k, k1 1iKk2 sén claus enteres; i és un natural major que 0):

e insereix k

e elimina k

e consulta k

e quants

e print

e print_interval k1 k2
e min

e max

e iessim i

Sortida

Per a cada linia d’entrada, escriu una linia amb el resultat:

e Sila linia és un diccionari, mostra el diccionari un cop inserit tots els seus elements.

e Si la linia és una comanda, mostra la comanda, el separador ”: ” i el resultat. Si la
comanda modifica el diccionari, mostra quants elements té despres d’aplicar-la.

e Silalinia és el separador de blocs format per 10 guions, mostra els mateixos 10 guions.



Observaci6

Només cal enviar les classes requerides; el programa principal sera ignorat. Seguiu estricta-

ment la definici6 dels tipus de I’enunciat.

Per implementar el diccionari no es poden usar les classes stack, queue, list, set o map de la

STL.

Els metodes insereix, elimina, consulta, min, max i iessim almenys han de tenir cost logarit-
mic (en el cas mig) per superar els jocs de prova privats. El métode quants ha de tenir cost
constant i els metodes print i print_interval cost lineal.

Exemple d’entrada 1

5-382-17-7 -6
quants

consulta -3
consulta -4
consulta 6

consulta 9

insereix -4
consulta -4
insereix 6

consulta 6

insereix 9

consulta 9

insereix 8

print
print_interval -2 6
min
max
iessim
iessim
iessim
iessim
iessim 11
elimina -3
consulta -3
elimina -7
consulta -7
elimina 7
consulta 7
elimina 7
print

min

R 30N

max
iessim 1
iessim 2
iessim 5
elimina -6
elimina 5
elimina 9
print

min

max

iessim 1
iessim 2
iessim 4

Exemple de sortida 1

[-7 -6 =3 -1 2 5 7 8]
quants: 8

consulta -3: 1
consulta —-4: 0
consulta 6: 0
consulta 9: 0
insereix —-4: 9
consulta —-4: 1

insereix 6: 10

consulta 6: 1

insereix 9: 11

consulta 9: 1

insereix 8: 11

print: [-7 -6 -4 -3 -1 2 5 6 7 8 9]
print_interval -2 6: [-1 2 5 6]
min: -7

max: 9

iessim 1: -7

iessim 2: -6

iessim 5: -1

iessim 7: 5

iessim 11: 9

elimina -3: 10
consulta -3: 0
elimina -7: 9
consulta -7: 0
elimina 7: 8

consulta 7: O
elimina 7: 8

print: [-6 -4 -1 2 5 6 8 9]
min: -6

max: 9

iessim 1: -6

iessim 2: -4

iessim 5: 5

elimina -6: 7
elimina 5: 6
elimina 9: 5

print: [-4 -1 2 6 8]
min: -4

max: 8

iessim 1: -4

iessim 2: -1

iessim 4: 6



Exemple d’entrada 2

5

quants
consulta 0
consulta 5
min

max

iessim 1
elimina O
elimina 5
print

consulta
consulta
insereix
consulta

B R R o

insereix
print
print_interval 0 2
print_interval -3 -2
print_interval 2 3
min

max

iessim 1

elimina 1

consulta 1

elimina 1

print

Informacié del problema

Autoria: Jordi Esteve

Generaci6: 2026-01-25T17:44:08.385Z

© Jutge.org, 2006-2026.
https:/ /jutge.org

Exemple de sortida 2

[5]

quants: 1
consulta 0: O
consulta 5: 1
min: 5

max: 5

iessim 1: 5
elimina 0: 1
elimina 5: 0

print: []

[]

consulta 0: O
consulta 1: O
insereix 1: 1
consulta 1: 1
insereix 1: 1
print: [1]

print_interval 0 2: [1]

print_interval -3 -2:

print_interval 2 3: []
min: 1
max: 1

iessim 1: 1
elimina 1: 0
consulta 1: O
elimina 1: O
print: []

[]


https://jutge.org

