Jutge.org

The Virtual Learning Environment for Computer Programming

Iteradors que s’enganxen a elements X66581_ca

Tipicament, executar ++ sobre un iterador que es troba al end de la llista produeix error
d’execuci¢, i executar —- sobre un iterador que es troba al begin de la llista també produeix
error d’execucié. Per comengar, en aquest exercici modificarem la subclasse iterator de
la classe List de manera que els errors d’execucié abans esmentats ja no es produiran. Sim-
plement, en tals casos els iteradors no es mouran.

Després modificarem la classe it erat or afegint tres nous metodes hook, st opHook, hasActiveHook,
i canviant el comportament dels métodes ++ i —— com descrivim a continuacio.

Suposem que un cert iterador it apunta a un cert element e; d"una llista. Llavors, una crida
it .hook () provocara que, a partir d’ara, it quedi enganxat a aquest element, i se I'endugui
amb ell a dreta o esquerra quan rep crides ++ 0 ——, respectivament.

Per a ser més precisos, suposem que a la dreta de e; hi ha un cert element e, (és a dir, e, esta
una unitat més a prop de I’end de la llista que e;. Llavors, una crida it++ o ++it, enlloc de
fer que it apunti a e,, el que provocara és que e, i e, intercanviin les seves posicions, i it
seguira apuntant a e;.

En el cas particular que e ja no tingui ningt a la dreta (i per tant e; siguil'altim element de la
llista, i a la seva dreta hi hagil’end de la llista), llavors una crida it++ o ++it no provocara
cap canvi.

Analogament, suposem que a l’esquerra de e; hi ha un cert element ¢, (és a dir, ¢, esta una
unitat més a prop del begin de la llista que e;. Llavors, una crida it-- o —-it, enlloc de
fer que it apunti a e), el que provocara és que e, i e, intercanviin les seves posicions, i it
seguira apuntant a e;.

En el cas particular que ¢; ja no tingui ningti a 'esquerra (i per tant e; sigui justament el
begin de lallista), llavors una crida it -— 0 ——it no provocara cap canvi.

Una crida posterior it . st opHook () cancel.laaquest comportament alternatiude it,itorna
al comportament usual, de manera que, a partir de llavors, les crides ++ el mouen a la dreta i
les crides —— el mouen a I’esquerra, sense provocar cap intercanvi entre posicions d’elements
de la llista.

Una crida it .hasActiveHook () retorna cert si it té un hook actiu, és a dir, si en algun
moment hi ha hagut una crida del tipus it . hook (), i després de 1'altima d’aquesta mena
de crides no hi ha hagut cap crida del tipus it . stopHook ().

Fixeu-vos en aquest exemple per tal d’acabar d’entendre-ho:

List<int> 10, 11;
List<int>::iterator a, b, c, d;

10.push_back (1) ; // 10: 1,
10.push_back (2) ; // 10: 1,2,
10.push_back (3) ; // 10: 1,2, 3,
11.push_back (4) ; // 11: 4,
11.push_back (5) ; // 11: 4,5,
11.push_back (6) ; // 11: 4,5,6,

a = 10.begin(); // 10: 1la, 2,3,
b = 10.end(); // 10: 1la,2,3,b

c = 1ll.begin(); // 11: 4c¢,5, 6,

d = 1l.end(); // 11: 4c¢,5,6,d
a——; // 10: 1a,2,3,b
at++; // 10: 1,2a,3,b
b++; // 10: 1,2a,3,b
b——; // 10: 1,2a, 3b,
a.hook () ; // 10: 1,2[a]l, 3b,
a——; // 10: 2[al, 1, 3b,
a-——j // 10: 2[al, 1, 3b,
at+; // 10: 1,2[al, 3b,
at+; // 10: 1,3b,2[al,
a++; // 10: 1,3b,2[al,
a-——j // 10: 1,2[a], 3b,
b——; // 10: 1,2[alb, 3,
a++; // 10: 1,3,2[alb,
a++; // 10: 1,3,2[alb,
a——; // 10: 1,2[alb, 3,
a-——j // 10: 2[alb, 1, 3,
a—-—; // 10: 2[alb, 1, 3,
b——; // 10: 2[alb, 1, 3,
b++; // 10: 2[al, 1lb, 3,
b.hook; // 10: 2[al,1l[b]l, 3,
b——; // 10: 1[bl,2[a]l, 3,
a——; // 10: 2[al,1l[b], 3,
b++; // 10: 2[a],3,1[b],
a.stopHook () ; // 10: 2a,3,1[b],
a-——j // 10: 2a,3,1[b],
at++; // 10: 2,3a,1[b],
at+; // 10: 2,3,1lalb],
a++; // 10: 2,3,1[b],a
c.hook () ; // 11: 4[c],5,6,d
c++; // 11: 5,4[c],6,d
C++; // 11: 5,6,4[c],d
c++; // 11: 5,6,4[c],d
d-—; // 11: 5,6,4[c]ld,
d.hook () ; // 11: 5,6,4[c][d],
d-—; // 11: 5,4 [c][d], 6,
c——; // 11: 4[c]l[d],5,6,
d——; // 11: 4[c]l[d], 5,6,
c——; // 11: 4[c]lI[d],5,6,
d++; // 11: 5,4[c][d], 6,
c.stopHook; // 11: 5,4c[d], 6,
d++; // 11: 5,6,4c[d],
Ct++; // 11: 5,6,4[d], c
ct++; // 11: 5,6,4[d],c
d++; // 11: 5,6,4[d],c

D’entre els fitxers que s’adjunten en aquest exercici, trobareu list.hh, a on hi ha una
implementacié de la classe genérica List. Haureu d’implementar els tres nous meétodes
hook, stopHook i hasActiveHook dins 1ist .hh ala part ptiblica de la classe iterator

(podeu

trobar les capgaleres comentades dins 1ist.hh), i modificar els dos metodes ++ i

els dos metodes —— convenientment (en realitat només cal modificar el pre-increment i el
pre-decrement perque el post-increment i post-decrement criden als primers). Necessitareu
també algun atribut addicional per tal de recordar si l'iterador té un hook actiu, amb les
convenients inicialitzacions.

Msés concretament, heu de fer els canvis que s’indiquen en algunes parts del codi de list.hh:

/]I

clas

terators mutables
s iterator {

friend class List;

private:

List *plist;
Item *pitem;
// Add new attributes to remember if the iterator has an active 'hook'

public:

it

//
//
//
//
//
//
//
//
it
/*

/*

//
//
//
//

erator () {
// Add initialization of new attributes.

Adapt this function so that moving beyond boundaries does not trigger er
but leaves the iterator unchanged instead.

Also, add the necessary adaptations so that, when the iterator has an ac
instead of making the iterator point to next element (towards the end of
the iterator keeps pointing to the same element, and this element swaps
with the next one (towards the end of the list). In the event that there
a next element, nothing changes.

Preincrement
erator operator++()

Pre: el p.i apunta a un element E de la llista,

que no és el end() */

Post: el p.i apunta a l'element seguent a E

el resultat és el p.i. */

if (pitem == & (plist->itemsup)) {
cerr << "Error: ++iterator at the end of list" << endl;
exit (1) ;

}

pitem = pitem—->next;

return *this;

Adapt this function so that moving beyond boundaries does not trigger er
but leaves the iterator unchanged instead.

Also, add the necessary adaptations so that, when the iterator has an ac
instead of making the iterator point to previous element (towards the be

//
//
//
//
it
/*

/*

//
//
//
//
//
//
//

//
//
//
//
//

//
//
//
//
//

the iterator keeps pointing to the same element, and this element swaps
with previous one (towards the begin of the list). In the event that the

a previous element, nothing changes.
Predecrement
erator operator--()
Pre: el p.i apunta a un element E de la llista que
no és el begin() */
Post: el p.i apunta a l'element anterior a E,
el resultat és el p.i. */
if (pitem == plist->iteminf.next) {
cerr << "Error: —--iterator at the beginning of list" << endl;
exit (1) ;
}
pitem = pitem—>prev;
return *this;
Pre: Iterator 'this' (the implicit parameter) does not have an active ho

and it points to an element of a list.

In particular, 'this' does not point to the end of a list.
Post: 'it' keeps pointing to the same element and has an active hook to

Remove comment marks and implement this function:
void hook () {
}

Pre: 'this' has an active hook.

Post: 'this' does not have an active hook.

Remove comment marks and implement this function:
void stopHook () {

}

Pre:

Post: Returns true iff 'this' has an active hook.
Remove comment marks and implement this function:
bool hasActiveHook () const {

}

No cal decidir que passa amb assignacions entre iteradors existents, doncs no es consideraran

en els jo

cs de proves.

D’entre els fitxers que s’adjunten a I’exercici també hi ha main.cc (programa principal), i
el podeu compilar directament, doncs inclou 1ist.hh. Només cal que pugeu 1ist .hh al

jutge.

Entrada

L'entrada del programa comenga amb una declaracié d'unes quantes llistes (10, 11, ...)
i uns quants iteradors (a, b, ¢, ...), i després té una seqiiéncia de comandes sobre les
llistes i els iteradors declarats. Com que ja us oferim el main.cc, no cal que us preocu-
peu d’implementar la lectura d’aquestes entrades. Només cal que implementeu la extensié
de la classe iterator abans esmentada.

Per simplificar, no hi haura comandes que eliminin elements de les llistes, com pop_back,
pop_front i erase. Podeu suposar que les comandes no fan coses extranyes, com fer
hook d'un iterador que no apunta a cap element, ni hasActiveHook d'un iterador que no
apunta a enlloc, i que sempre que un iterador sigui mogut, aquest estara apuntant a alguna
posicié d’alguna llista (amb un element o 1'end). Podeu suposar que les comandes faran
hook sobre iteradors sense cap hook actiu, i que faran st opHook sobre iteradors que tinguin
un hook actiu.

Sortida

Per a cada comanda d’escriptura sobre la sortida s’escriura el resultat corresponent. Elmain. cc
que us oferim ja fa aix0. Només cal que implementeu la extensi6é dela classe iterator abans
esmentada.

Exemple d’entrada 1
. . cout<< 10 <<endl;
List<int> 10 , 11 ; cout<< 11 <<endl;
List<int>::iterator a , b , ¢ , d ;
a .hook(); // 10: 1,2[al, 3b,
10 .push_back(1); // 10: 1,
10 .push_back(2); // 10: 1,2, cout<< 10 <<endl;
10 .push_back(3); // 10: 1,2,3, cout<< 11 <<endl;
11 .push_back(4); // 11: 4,
11 .push_back(5); // 11: 4,5, a ——; // 10: 2[al, 1, 3b,
11 .push_back(6); // 11: 4,5,6,
cout<< 10 <<endl;
a = 10 .begin(); // 10: 1la, 2,3, cout<< 11 <<endl;
b =10 .end(); // 10: 1la,2,3,b
c =11 .begin(); // 11: 4c¢,5,6, a ——; // 10: 2[al, 1, 3b,
d =11 .end(); // 11: 4c¢,5,6,d
cout<< 10 <<endl;
cout<< 10 <<endl; cout<< 11 <<endl;
cout<< 11 <<endl;
a ++; // 10: 1,2[al, 3b,
a ——; // 10: 1la,2,3,b
cout<< 10 <<endl;
cout<< 10 <<endl; cout<< 11 <<endl;
cout<< 11 <<endl;
a ++; // 10: 1,3b,2[a]l,
a ++; // 10: 1,2a,3,b
cout<< 10 <<endl;
cout<< 10 <<endl; cout<< 11 <<endl;
cout<< 11 <<endl;
a ++; // 10: 1,3b,2[a]
b ++; // 10: 1,2a,3,b
cout<< 10 <<endl;
cout<< 10 <<endl; cout<< 11 <<endl;
cout<< 11 <<endl;
a ——; // 10: 1,2[al, 3b,
b ——; // 10: 1, 2a, 3b,

cout<<
cout<<

cout<<
cout<<

cout<<
cout<<

a ++;

cout<<
cout<<

cout<<
cout<<

b —=;

cout<<
cout<<

b ++;

cout<<
cout<<

b .hook ();

cout<<
cout<<

cout<<
cout<<

b ++;

cout<<

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;

// 10:

// 10:

// 10:

// 10:

// 10:

// 10:

// 10:

// 10:

// 10:

// 10:

// 10:

// 10:

1,2[alb, 3,

1,3,2[alb,

1,3,2[alb,

1,2[alb, 3,

2lalb, 1,3,

2lalb, 1,3,

2[alb, 1, 3,

2[a], 1lb, 3,

2[a], 1[b],

1[b], 2[a], 3,

2[a], 1[b],3,

2[al, 3,1[b],

cout<< 11 <<endl;

a .stopHook () ;

cout<<
cout<<

cout<<
cout<<

a ++;

cout<<
cout<<

cout<<
cout<<

a ++;

cout<<
cout<<

c .hook () ;

cout<<
cout<<

c ++;

cout<<
cout<<

C ++;

cout<<
cout<<

c ++;

cout<<
cout<<

a -——;

cout<<
cout<<

d .hook () ;

cout<<
cout<<

d ——;

cout<<
cout<<

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

1/

/7

!/

1/

/7

1/

!/

/7

1/

1/

//

1/

10:

10:

10:

10:

10:

11:

11:

11:

11:

11:

11:

11:

2a,3,1[b],

2a,3,1[b],

2,3a,1[b],

2,3,1lalbl,

2,3,1[b],a

4[c],5,6,d

5,6,4[c], d

5,6,4[c],d

5,6,4[cld,

5,6,4[c][d],

cout<< 10
cout<< 11

cout<< 10
cout<< 11

cout<< 10
cout<< 11

d ++;

cout<< 10
cout<< 11

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

c .stopHook () ;

cout<< 10
cout<< 11

d ++;

cout<< 10
cout<< 11

c ++;

cout<< 10
cout<< 11

cout<< 10
cout<< 11

d ++;

cout<< 10
cout<< 11

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

/7

/7

!/

/7

!/

/7

1/

1/

11:

11:

11:

11:

// 11:

11:

11:

11:

11:

5,4[cl[d], 6,

5,4c([d], 6,

5,6,4c[d],

5,6,4[d], c

5,6,4[d], c

5,6,4[d],c

Exemple de sortida 1

la,2,3,b
4c,5,6,d
la,2,3,b
4c,5,6,d
1,2a,3,b
4c,5,6,d
1,2a,3,b
4c,5,6,d
1,2a, 3b,
4c,5,6,d
1,2[a]l, 3b,
4c,5,6,d
2[al,

1,2[a], 3b,
4c,5,6,d
1,2[alb, 3,
4c,5,6,d
1,3,2[a]lb,
4c,5,6,d
1,3,2[alb,
4¢c,5,6,d
1,2[alb, 3,
4c,5,6,d
2[alb, 1, 3,
4c,5,6,d
2[alb, 1,3,
4¢c,5,6,d
2[alb, 1, 3,
4c,5,6,d
2[al, 1b, 3,
4c,5,6,d
2[al,1[b], 3,
4¢c,5,6,d
1[bl,2[al, 3,
4c,5,6,d
2[al,1l[b], 3,
4c,5,6,d
2[al,3,1[b],
4¢c,5,6,d
2a,3,1[b],
4c,5,6,d
2a,3,1[b],
4c,5,60,d
2,3a,1[b],
4c,5,6,d
2,3,1la[b],
4c,5,6,d
2,3,1[b]l,a
4c,5,6,d
2,3,1[b]l,a

4[c],5,6,d
2,3,1[bl,a
5,4[c],6,d
2,3,1[b],a
5,6,4[c],d
2,3,1[b],a
5,6,4[c], d
2,3,1[b],a
5,6,4[cld,
2,3,1[b],a
5,6,4[c][d],
2,3,1[b],a
5,4[cl[d], 6,
2,3,1[b],a
4[cl[d], 5,6,
2,3,1[b],a

Exemple d’entrada 2

List<int> 10 , 11 ;
List<int>::iterator a ,

a = 11 .begin();
b = 10 .begin();
c =11 .begin();
d = 11 .begin();
e = 11 .begin();
e ——j

cout<< 11 <<endl;
a ++;

b = 10 .begin();
e ++;

77d;

c ++;

c -

—— ¢

++ e ;

e ——;

10 .push_front(-3);

b —=;

77b;

e ——;

cout<< 10 .size()<<endl;
cout<< 10 <<endl;

e ——;
++ d ;
b .hook () ;

10 .push_front(-1);
++ b ;

a ++;

c ++;

e ——j
77d’

c -

++ a ;

11 .insert(e , -3);
— a

— c ;

—— e

c .hook () ;

cout<< 10 <<endl;
10 .insert(b , -2);

4lclld], 5,6,
2,3,1[bl,a
4lclld], 5,6,
2,3,1[b],a
5,4[c]ld], 6,
2,3,1[b],a
5,4c[d], 6,
2,3,1[b],a

e = 10 .end();

— c ;

a .hook () ;

cout<<* a <<endl;

10 .push_front(-2);
11 .push_front(-2);
-— b ;

++ e ;
11 .insert(d , 0);
e ++;

11 .push_back(4);
-— c ;

a ——;

10 .push_front(3);
-— c ;

__d;

cout<< 11 <<endl;

— e ;

11 .insert(d , 1);
cout<<* e <<endl;

++ d ;

c ++;

a .stopHook () ;
cout<<* a <<endl;
cout<<* c <<endl;
cout<< 10 .size()<<endl;
cout<< 11 <<endl;

e .hook () ;

e ++;

cout<< 11 <<endl;
cout<< 11 <<endl;

d -—;

e = 11 .begin();

d ++;

a =11 .end();
cout<< 11 <<endl;

a -——;
e ++;
d .hook () ;

c = 10 .begin();
cout<< 11 <<endl;
e ++;

e ——;

77b’.
cout<< 10 <<endl;

cout<< 10 .size()<<endl;

cout<< 11 <<endl;
b ——;

d =11 .end();

10 .push_back(3)
10 .push_front (-2
a = 10 .begin();

c .hook () ;

11 .push_back(2)
++ e ;

e ——

c -

11 .push_front(-1
a .hook();

11 .insert(e , 4

10 .push_front(-2
c ++;

10 .insert(a , -2
cout<<* a <<endl;

10 .push_front(1

7

)i

’

)i

)i

)i

cout<< 10 .size()<<endl;

—— a ;
cout<<* b <<endl;
a ++;

e ——j

11 .push_front (-3
++ e ;

10 .insert(b , O
da -——;

e ++;

10 .insert(b , -2
c ++;

c ++;

10 .push_front(-1
—_— d I.

d ++;

++ b ;

cout<<* b <<endl;
c = 11 .begin();
11 .insert(d , O
c -3

a ++;
d =11 .end();

b ++;

a ++;

a ++;

10 .push_front (-4
da -—;

++ d ;

cout<< 11 <<endl;
e ——;

++ ¢ ;

11 .insert(e

11 .insert(d , 3
10 .insert(a

)i

)i

)i

)i

)i

)i

— e ;
10 .push_back(4);
cout<< 10 <<endl;

a ++;

e ++;

++ ¢ ;

++ e ;

c -7

10 .push_front(-3);
10 .push_front(-2);
cout<< 10 <<endl;

b = 10 .begin();
cout<< 10 .size()<<endl;
cout<< 10 .size()<<endl;
d ——;

cout<< 11 <<endl;

b .hook () ;

11 .insert(c , -3);
++ b ;

++ a ;

e ——;

b .stopHook () ;

d .hook();

d ++;

++ e ;

cout<< 10 <<endl;

— c ;

,,d;

10 .push_front(4);
— e ;

11 .insert(c , 0);
11 .push_back(-4);
++ d ;

— e ;

d ++;

cout<<* c <<endl;
cout<<* e <<endl;

++ c ;

cout<< 11 <<endl;
cout<< 10 <<endl;

10 .push_front(3);
cout<< 11 <<endl;

++ ¢ ;
_— b ;

a ++;

cout<< 11 .size()<<endl;
b ++;

e .hook () ;

cout<< 10 <<endl;

++ a ;

++ ¢ ;

a ++;

_— d ;

—— e ;

a ++;

— a ;

b ——;

a —=j

cout<< 10 <<endl;
cout<< 10 <<endl;
10 .push_front(-2);

cout<< 10 <<endl;
cout<< 11 <<endl;

Observaci6
Avaluaci6 sobre 10 punts:
e Soluci6 lenta: 5 punts.

e soluci6 rapida: 10 punts.

Exemple de sortida 2

acde

1

-3b,

-1,-3[b],

-3
-3[al[c],-2,0, 4d,

-2,-3e,0,1,4[d],a

-2

10

-3

-3
-3c,-1,4,-2,-3¢,0,1,4,0,2,d
-4,-1,1,-2,-2,-2,0,3,3,-2[al,-2,-1,-2,-3[b], 3,4,
-2,-3,-4,-1,1,-2,-2,-2,0,3,3

18

18

-3,-1c,4,-2,-2,-3e,0,1,4,0,2, 34,

-3,-2b,-4,-1,1,-2,-2,-2,0,3,3,-2,-1,-2[a]l],-2,-3,3, 4,

-3
-2
-3,0,-3,-1c,4,-2e,-2,-3,0,1,4,0,2,-4,3[d],

7_2/_2[8-]1_1!_21_3 [b]/ 3/ 4/

4,-3,-2b,-4,-1,1,-2,-2,-2,0,3,3,-2,-1,-2[al,-2,-3,3,4,

-3,0,-3,-1c,4,-2e,-2,-3,0,1,4,0,2,-4,3[d],
15

3,4,-3,-2b,-4,-1,1,-2,-2,-2,0,3,3,-2,-1,-2,-2[a], -3,
3,4,-3b,-2,-4,-1,1,-2,-2,-2,0,3,3,-2,-1,-2, -3, -2[a]

3,4,-3b,-2,-4,-1,1,-2,-2,-2,0,3,3,-2,-1,-2,-3,-2[a]

-2,3,4,-3b,-2,-4,-1,1,-2,-2,-2,0,3,3,-2,-1,-2,-3, -2

-3,0,-3,-1,-2clel, 4,-2,-3,0,1,4,0,2,3[d], -4,

Entenem com a solucié rapida una que és correcta, on totes les operacions tenen cost constant
(excepte I’escriptura de tota la llista per la sortida, que té cost lineal), i capag de superar els
jocs de proves publics i privats. Entenem com a soluci6 lenta una que no és rapida, pero és
correcta i capag de superar els jocs de proves publics.

Informacié del problema

Autoria: PRO2

Generacid: 2026-01-27T18:54:25.3747.

© Jutge.org, 2006-2026.
https://jutge.org

https://jutge.org

