
Jutge.org
The Virtual Learning Environment for Computer Programming

Iteradors que s’enganxen a elements X66581_ca

Típicament, executar ++ sobre un iterador que es troba al end de la llista produeix error
d’execució, i executar -- sobre un iterador que es troba al begin de la llista també produeix
error d’execució. Per començar, en aquest exercici modificarem la subclasse iterator de
la classe List de manera que els errors d’execució abans esmentats ja no es produiran. Sim-
plement, en tals casos els iteradors no es mouran.
Desprésmodificarem la classeiterator afegint tres nousmètodeshook, stopHook, hasActiveHook,
i canviant el comportament dels mètodes ++ i -- com descrivim a continuació.
Suposem que un cert iterador it apunta a un cert element 𝑒1 d’una llista. Llavors, una crida
it.hook() provocarà que, a partir d’ara, it quedi enganxat a aquest element, i se l’endugui
amb ell a dreta o esquerra quan rep crides ++ o --, respectivament.
Per a ser més precisos, suposem que a la dreta de 𝑒1 hi ha un cert element 𝑒2 (és a dir, 𝑒2 està
una unitat més a prop de l’end de la llista que 𝑒1. Llavors, una crida it++ o ++it, enlloc de
fer que it apunti a 𝑒2, el que provocarà és que 𝑒1 i 𝑒2 intercanviin les seves posicions, i it
seguirà apuntant a 𝑒1.
En el cas particular que 𝑒1 ja no tingui ningú a la dreta (i per tant 𝑒1 sigui l’últim element de la
llista, i a la seva dreta hi hagi l’end de la llista), llavors una crida it++ o ++it no provocarà
cap canvi.
Anàlogament, suposem que a l’esquerra de 𝑒1 hi ha un cert element 𝑒′

2 (és a dir, 𝑒′
2 està una

unitat més a prop del begin de la llista que 𝑒1. Llavors, una crida it-- o --it, enlloc de
fer que it apunti a 𝑒′

2, el que provocarà és que 𝑒1 i 𝑒′
2 intercanviin les seves posicions, i it

seguirà apuntant a 𝑒1.
En el cas particular que 𝑒1 ja no tingui ningú a l’esquerra (i per tant 𝑒1 sigui justament el
begin de la llista), llavors una crida it-- o --it no provocarà cap canvi.
Una crida posteriorit.stopHook() cancel.la aquest comportament alternatiu deit, i torna
al comportament usual, de manera que, a partir de llavors, les crides ++ el mouen a la dreta i
les crides -- el mouen a l’esquerra, sense provocar cap intercanvi entre posicions d’elements
de la llista.
Una crida it.hasActiveHook() retorna cert si it té un hook actiu, és a dir, si en algun
moment hi ha hagut una crida del tipus it.hook(), i després de l’última d’aquesta mena
de crides no hi ha hagut cap crida del tipus it.stopHook().
Fixeu-vos en aquest exemple per tal d’acabar d’entendre-ho:

List<int> l0, l1;
List<int>::iterator a, b, c, d;

l0.push_back(1); // l0: 1,
l0.push_back(2); // l0: 1,2,
l0.push_back(3); // l0: 1,2,3,
l1.push_back(4); // l1: 4,
l1.push_back(5); // l1: 4,5,
l1.push_back(6); // l1: 4,5,6,

a = l0.begin(); // l0: 1a,2,3,
b = l0.end(); // l0: 1a,2,3,b
c = l1.begin(); // l1: 4c,5,6,

d = l1.end(); // l1: 4c,5,6,d

a--; // l0: 1a,2,3,b
a++; // l0: 1,2a,3,b
b++; // l0: 1,2a,3,b
b--; // l0: 1,2a,3b,
a.hook(); // l0: 1,2[a],3b,
a--; // l0: 2[a],1,3b,
a--; // l0: 2[a],1,3b,
a++; // l0: 1,2[a],3b,
a++; // l0: 1,3b,2[a],
a++; // l0: 1,3b,2[a],
a--; // l0: 1,2[a],3b,
b--; // l0: 1,2[a]b,3,
a++; // l0: 1,3,2[a]b,
a++; // l0: 1,3,2[a]b,
a--; // l0: 1,2[a]b,3,
a--; // l0: 2[a]b,1,3,
a--; // l0: 2[a]b,1,3,
b--; // l0: 2[a]b,1,3,
b++; // l0: 2[a],1b,3,
b.hook; // l0: 2[a],1[b],3,
b--; // l0: 1[b],2[a],3,
a--; // l0: 2[a],1[b],3,
b++; // l0: 2[a],3,1[b],
a.stopHook(); // l0: 2a,3,1[b],
a--; // l0: 2a,3,1[b],
a++; // l0: 2,3a,1[b],
a++; // l0: 2,3,1a[b],
a++; // l0: 2,3,1[b],a
c.hook(); // l1: 4[c],5,6,d
c++; // l1: 5,4[c],6,d
c++; // l1: 5,6,4[c],d
c++; // l1: 5,6,4[c],d
d--; // l1: 5,6,4[c]d,
d.hook(); // l1: 5,6,4[c][d],
d--; // l1: 5,4[c][d],6,
c--; // l1: 4[c][d],5,6,
d--; // l1: 4[c][d],5,6,
c--; // l1: 4[c][d],5,6,
d++; // l1: 5,4[c][d],6,
c.stopHook; // l1: 5,4c[d],6,
d++; // l1: 5,6,4c[d],
c++; // l1: 5,6,4[d],c
c++; // l1: 5,6,4[d],c
d++; // l1: 5,6,4[d],c

D’entre els fitxers que s’adjunten en aquest exercici, trobareu list.hh, a on hi ha una
implementació de la classe genèrica List. Haureu d’implementar els tres nous mètodes
hook, stopHook i hasActiveHook dins list.hh a la part pública de la classe iterator

(podeu trobar les capçaleres comentades dins list.hh), i modificar els dos mètodes ++ i
els dos mètodes -- convenientment (en realitat només cal modificar el pre-increment i el
pre-decrement perquè el post-increment i post-decrement criden als primers). Necessitareu
també algun atribut addicional per tal de recordar si l’iterador té un hook actiu, amb les
convenients inicialitzacions.
Més concretament, heu de fer els canvis que s’indiquen en algunes parts del codi de list.hh:

// Iterators mutables
class iterator {

friend class List;
private:

List *plist;
Item *pitem;
// Add new attributes to remember if the iterator has an active 'hook'

public:

iterator() {
// Add initialization of new attributes.

}

// Adapt this function so that moving beyond boundaries does not trigger error,
// but leaves the iterator unchanged instead.
// Also, add the necessary adaptations so that, when the iterator has an active hook,
// instead of making the iterator point to next element (towards the end of the list),
// the iterator keeps pointing to the same element, and this element swaps its position
// with the next one (towards the end of the list). In the event that there is no such
// a next element, nothing changes.
// Preincrement
iterator operator++()
/* Pre: el p.i apunta a un element E de la llista,

que no és el end() */
/* Post: el p.i apunta a l'element següent a E

el resultat és el p.i. */
{

if (pitem == &(plist->itemsup)) {
cerr << "Error: ++iterator at the end of list" << endl;
exit(1);

}
pitem = pitem->next;
return *this;

}

...

// Adapt this function so that moving beyond boundaries does not trigger error,
// but leaves the iterator unchanged instead.
// Also, add the necessary adaptations so that, when the iterator has an active hook,
// instead of making the iterator point to previous element (towards the begin of the list),

// the iterator keeps pointing to the same element, and this element swaps its position
// with previous one (towards the begin of the list). In the event that there is no such
// a previous element, nothing changes.
// Predecrement
iterator operator--()
/* Pre: el p.i apunta a un element E de la llista que

no és el begin() */
/* Post: el p.i apunta a l'element anterior a E,

el resultat és el p.i. */
{

if (pitem == plist->iteminf.next) {
cerr << "Error: --iterator at the beginning of list" << endl;
exit(1);

}
pitem = pitem->prev;
return *this;

}

...

// Pre: Iterator 'this' (the implicit parameter) does not have an active hook,
// and it points to an element of a list.
// In particular, 'this' does not point to the end of a list.
// Post: 'it' keeps pointing to the same element and has an active hook to this element.
// Remove comment marks and implement this function:
// void hook() {
// }

// Pre: 'this' has an active hook.
// Post: 'this' does not have an active hook.
// Remove comment marks and implement this function:
// void stopHook() {
// }

// Pre:
// Post: Returns true iff 'this' has an active hook.
// Remove comment marks and implement this function:
// bool hasActiveHook() const {
// }

...

No cal decidir que passa amb assignacions entre iteradors existents, doncs no es consideraran
en els jocs de proves.
D’entre els fitxers que s’adjunten a l’exercici també hi ha main.cc (programa principal), i
el podeu compilar directament, doncs inclou list.hh. Només cal que pugeu list.hh al
jutge.

Entrada
L’entrada del programa comença amb una declaració d’unes quantes llistes (l0, l1, ...)
i uns quants iteradors (a,b,c,...), i després té una seqüència de comandes sobre les
llistes i els iteradors declarats. Com que ja us oferim el main.cc, no cal que us preocu-
peu d’implementar la lectura d’aquestes entrades. Només cal que implementeu la extensió
de la classe iterator abans esmentada.
Per simplificar, no hi haurà comandes que eliminin elements de les llistes, com pop_back,
pop_front i erase. Podeu suposar que les comandes no fan coses extranyes, com fer
hook d’un iterador que no apunta a cap element, ni hasActiveHook d’un iterador que no
apunta a enlloc, i que sempre que un iterador sigui mogut, aquest estarà apuntant a alguna
posició d’alguna llista (amb un element o l’end). Podeu suposar que les comandes faran
hook sobre iteradors sense cap hook actiu, i que faran stopHook sobre iteradors que tinguin
un hook actiu.

Sortida
Per a cada comandad’escriptura sobre la sortida s’escriurà el resultat corresponent. Elmain.cc
que us oferim ja fa això. Només cal que implementeu la extensió de la classeiterator abans
esmentada.

Exemple d’entrada 1
List<int> l0 , l1 ;
List<int>::iterator a , b , c , d ;

l0 .push_back(1); // l0: 1,
l0 .push_back(2); // l0: 1,2,
l0 .push_back(3); // l0: 1,2,3,
l1 .push_back(4); // l1: 4,
l1 .push_back(5); // l1: 4,5,
l1 .push_back(6); // l1: 4,5,6,

a = l0 .begin(); // l0: 1a,2,3,
b = l0 .end(); // l0: 1a,2,3,b
c = l1 .begin(); // l1: 4c,5,6,
d = l1 .end(); // l1: 4c,5,6,d

cout<< l0 <<endl;
cout<< l1 <<endl;

a --; // l0: 1a,2,3,b

cout<< l0 <<endl;
cout<< l1 <<endl;

a ++; // l0: 1,2a,3,b

cout<< l0 <<endl;
cout<< l1 <<endl;

b ++; // l0: 1,2a,3,b

cout<< l0 <<endl;
cout<< l1 <<endl;

b --; // l0: 1,2a,3b,

cout<< l0 <<endl;
cout<< l1 <<endl;

a .hook(); // l0: 1,2[a],3b,

cout<< l0 <<endl;
cout<< l1 <<endl;

a --; // l0: 2[a],1,3b,

cout<< l0 <<endl;
cout<< l1 <<endl;

a --; // l0: 2[a],1,3b,

cout<< l0 <<endl;
cout<< l1 <<endl;

a ++; // l0: 1,2[a],3b,

cout<< l0 <<endl;
cout<< l1 <<endl;

a ++; // l0: 1,3b,2[a],

cout<< l0 <<endl;
cout<< l1 <<endl;

a ++; // l0: 1,3b,2[a],

cout<< l0 <<endl;
cout<< l1 <<endl;

a --; // l0: 1,2[a],3b,

cout<< l0 <<endl;
cout<< l1 <<endl;

b --; // l0: 1,2[a]b,3,

cout<< l0 <<endl;
cout<< l1 <<endl;

a ++; // l0: 1,3,2[a]b,

cout<< l0 <<endl;
cout<< l1 <<endl;

a ++; // l0: 1,3,2[a]b,

cout<< l0 <<endl;
cout<< l1 <<endl;

a --; // l0: 1,2[a]b,3,

cout<< l0 <<endl;
cout<< l1 <<endl;

a --; // l0: 2[a]b,1,3,

cout<< l0 <<endl;
cout<< l1 <<endl;

a --; // l0: 2[a]b,1,3,

cout<< l0 <<endl;
cout<< l1 <<endl;

b --; // l0: 2[a]b,1,3,

cout<< l0 <<endl;
cout<< l1 <<endl;

b ++; // l0: 2[a],1b,3,

cout<< l0 <<endl;
cout<< l1 <<endl;

b .hook(); // l0: 2[a],1[b],3,

cout<< l0 <<endl;
cout<< l1 <<endl;

b --; // l0: 1[b],2[a],3,

cout<< l0 <<endl;
cout<< l1 <<endl;

a --; // l0: 2[a],1[b],3,

cout<< l0 <<endl;
cout<< l1 <<endl;

b ++; // l0: 2[a],3,1[b],

cout<< l0 <<endl;

cout<< l1 <<endl;

a .stopHook(); // l0: 2a,3,1[b],

cout<< l0 <<endl;
cout<< l1 <<endl;

a --; // l0: 2a,3,1[b],

cout<< l0 <<endl;
cout<< l1 <<endl;

a ++; // l0: 2,3a,1[b],

cout<< l0 <<endl;
cout<< l1 <<endl;

a ++; // l0: 2,3,1a[b],

cout<< l0 <<endl;
cout<< l1 <<endl;

a ++; // l0: 2,3,1[b],a

cout<< l0 <<endl;
cout<< l1 <<endl;

c .hook(); // l1: 4[c],5,6,d

cout<< l0 <<endl;
cout<< l1 <<endl;

c ++; // l1: 5,4[c],6,d

cout<< l0 <<endl;
cout<< l1 <<endl;

c ++; // l1: 5,6,4[c],d

cout<< l0 <<endl;
cout<< l1 <<endl;

c ++; // l1: 5,6,4[c],d

cout<< l0 <<endl;
cout<< l1 <<endl;

d --; // l1: 5,6,4[c]d,

cout<< l0 <<endl;
cout<< l1 <<endl;

d .hook(); // l1: 5,6,4[c][d],

cout<< l0 <<endl;
cout<< l1 <<endl;

d --; // l1: 5,4[c][d],6,

cout<< l0 <<endl;
cout<< l1 <<endl;

c --; // l1: 4[c][d],5,6,

cout<< l0 <<endl;
cout<< l1 <<endl;

d --; // l1: 4[c][d],5,6,

cout<< l0 <<endl;
cout<< l1 <<endl;

c --; // l1: 4[c][d],5,6,

cout<< l0 <<endl;
cout<< l1 <<endl;

d ++; // l1: 5,4[c][d],6,

cout<< l0 <<endl;
cout<< l1 <<endl;

c .stopHook(); // l1: 5,4c[d],6,

cout<< l0 <<endl;
cout<< l1 <<endl;

d ++; // l1: 5,6,4c[d],

cout<< l0 <<endl;
cout<< l1 <<endl;

c ++; // l1: 5,6,4[d],c

cout<< l0 <<endl;
cout<< l1 <<endl;

c ++; // l1: 5,6,4[d],c

cout<< l0 <<endl;
cout<< l1 <<endl;

d ++; // l1: 5,6,4[d],c

cout<< l0 <<endl;
cout<< l1 <<endl;

Exemple de sortida 1
1a,2,3,b
4c,5,6,d
1a,2,3,b
4c,5,6,d
1,2a,3,b
4c,5,6,d
1,2a,3,b
4c,5,6,d
1,2a,3b,
4c,5,6,d
1,2[a],3b,
4c,5,6,d
2[a],1,3b,
4c,5,6,d
2[a],1,3b,
4c,5,6,d
1,2[a],3b,
4c,5,6,d
1,3b,2[a],
4c,5,6,d
1,3b,2[a],
4c,5,6,d
1,2[a],3b,
4c,5,6,d
1,2[a]b,3,
4c,5,6,d
1,3,2[a]b,
4c,5,6,d
1,3,2[a]b,
4c,5,6,d
1,2[a]b,3,
4c,5,6,d
2[a]b,1,3,
4c,5,6,d
2[a]b,1,3,
4c,5,6,d
2[a]b,1,3,
4c,5,6,d
2[a],1b,3,
4c,5,6,d
2[a],1[b],3,
4c,5,6,d
1[b],2[a],3,
4c,5,6,d
2[a],1[b],3,
4c,5,6,d
2[a],3,1[b],
4c,5,6,d
2a,3,1[b],
4c,5,6,d
2a,3,1[b],
4c,5,6,d
2,3a,1[b],
4c,5,6,d
2,3,1a[b],
4c,5,6,d
2,3,1[b],a
4c,5,6,d
2,3,1[b],a

4[c],5,6,d
2,3,1[b],a
5,4[c],6,d
2,3,1[b],a
5,6,4[c],d
2,3,1[b],a
5,6,4[c],d
2,3,1[b],a
5,6,4[c]d,
2,3,1[b],a
5,6,4[c][d],
2,3,1[b],a
5,4[c][d],6,
2,3,1[b],a
4[c][d],5,6,
2,3,1[b],a

4[c][d],5,6,
2,3,1[b],a
4[c][d],5,6,
2,3,1[b],a
5,4[c][d],6,
2,3,1[b],a
5,4c[d],6,
2,3,1[b],a
5,6,4c[d],
2,3,1[b],a
5,6,4[d],c
2,3,1[b],a
5,6,4[d],c
2,3,1[b],a
5,6,4[d],c

Exemple d’entrada 2
List<int> l0 , l1 ;
List<int>::iterator a , b , c , d , e ;
a = l1 .begin();
b = l0 .begin();
c = l1 .begin();
d = l1 .begin();
e = l1 .begin();
e --;
cout<< l1 <<endl;
a ++;
b = l0 .begin();
e ++;
-- d ;
c ++;
c --;
-- c ;
++ e ;
e --;
l0 .push_front(-3);
b --;
-- b ;
e --;
cout<< l0 .size()<<endl;
cout<< l0 <<endl;
e --;
++ d ;
b .hook();
l0 .push_front(-1);
++ b ;
a ++;
c ++;
e --;
-- d ;
c --;
++ a ;
l1 .insert(e , -3);
-- a ;
-- c ;
-- e ;
c .hook();
cout<< l0 <<endl;
l0 .insert(b , -2);

e = l0 .end();
-- c ;
a .hook();
cout<<* a <<endl;
l0 .push_front(-2);
l1 .push_front(-2);
-- b ;
++ e ;
l1 .insert(d , 0);
e ++;
l1 .push_back(4);
-- c ;
a --;
l0 .push_front(3);
-- c ;
-- d ;
cout<< l1 <<endl;
-- e ;
l1 .insert(d , 1);
cout<<* e <<endl;
++ d ;
c ++;
a .stopHook();
cout<<* a <<endl;
cout<<* c <<endl;
cout<< l0 .size()<<endl;
cout<< l1 <<endl;
e .hook();
e ++;
cout<< l1 <<endl;
cout<< l1 <<endl;
d --;
e = l1 .begin();
d ++;
a = l1 .end();
cout<< l1 <<endl;
d --;
e ++;
d .hook();
c = l0 .begin();
cout<< l1 <<endl;
e ++;
e --;

-- b ;
cout<< l0 <<endl;
cout<< l0 .size()<<endl;
cout<< l1 <<endl;
b --;
d = l1 .end();
l0 .push_back(3);
l0 .push_front(-2);
a = l0 .begin();
c .hook();
l1 .push_back(2);
++ e ;
e --;
c --;
l1 .push_front(-1);
a .hook();
e --;
++ b ;
d --;
d ++;
l1 .insert(e , 4);
l0 .push_front(-2);
c ++;
l0 .insert(a , -2);
cout<<* a <<endl;
l0 .push_front(1);
cout<< l0 .size()<<endl;
-- a ;
cout<<* b <<endl;
a ++;
e --;
l1 .push_front(-3);
++ e ;
l0 .insert(b , 0);
d --;
e ++;
l0 .insert(b , -2);
c ++;
c ++;
l0 .push_front(-1);
-- d ;
d ++;
++ b ;
cout<<* b <<endl;
c = l1 .begin();
l1 .insert(d , 0);
c --;
a ++;
d = l1 .end();
b ++;
a ++;
a ++;
l0 .push_front(-4);
d --;
++ d ;
cout<< l1 <<endl;
e --;
++ c ;
l1 .insert(e , -2);
l1 .insert(d , 3);
l0 .insert(a , 3);

-- e ;
l0 .push_back(4);
cout<< l0 <<endl;
a ++;
e ++;
++ c ;
++ e ;
c --;
l0 .push_front(-3);
l0 .push_front(-2);
cout<< l0 <<endl;
b = l0 .begin();
cout<< l0 .size()<<endl;
cout<< l0 .size()<<endl;
d --;
cout<< l1 <<endl;
b .hook();
l1 .insert(c , -3);
++ b ;
++ a ;
e --;
b .stopHook();
d .hook();
d ++;
++ e ;
cout<< l0 <<endl;
-- c ;
-- d ;
l0 .push_front(4);
-- e ;
l1 .insert(c , 0);
l1 .push_back(-4);
++ d ;
-- e ;
d ++;
cout<<* c <<endl;
cout<<* e <<endl;
++ c ;
cout<< l1 <<endl;
cout<< l0 <<endl;
l0 .push_front(3);
cout<< l1 <<endl;
++ c ;
-- b ;
a ++;
cout<< l1 .size()<<endl;
b ++;
e .hook();
cout<< l0 <<endl;
++ a ;
++ c ;
a ++;
-- d ;
-- e ;
a ++;
-- a ;
b --;
a --;
cout<< l0 <<endl;
cout<< l0 <<endl;
l0 .push_front(-2);

cout<< l0 <<endl;
cout<< l1 <<endl;

Exemple de sortida 2
acde
1
-3b,
-1,-3[b],
-3
-3[a][c],-2,0,4d,
-2
-3
-3
5
-2,-3a[c],0,1,4,d
-2,-3a[c],0,1,4,d
-2,-3a[c],0,1,4,d
-2e,-3[c],0,1,4,ad
-2,-3e,0,1,4[d],a
3c,-2,-3[b],-1,-2,
5
-2,-3e,0,1,4[d],a
-2
10
-3
-3
-3c,-1,4,-2,-3e,0,1,4,0,2,d
-4,-1,1,-2,-2,-2,0,3,3,-2[a],-2,-1,-2,-3[b],3,4,
-2,-3,-4,-1,1,-2,-2,-2,0,3,3,-2,-2[a],-1,-2,-3[b],3,4,
18
18
-3,-1c,4,-2,-2,-3e,0,1,4,0,2,3d,
-3,-2b,-4,-1,1,-2,-2,-2,0,3,3,-2,-1,-2[a],-2,-3,3,4,
-3
-2
-3,0,-3,-1c,4,-2e,-2,-3,0,1,4,0,2,-4,3[d],
4,-3,-2b,-4,-1,1,-2,-2,-2,0,3,3,-2,-1,-2[a],-2,-3,3,4,
-3,0,-3,-1c,4,-2e,-2,-3,0,1,4,0,2,-4,3[d],
15
3,4,-3,-2b,-4,-1,1,-2,-2,-2,0,3,3,-2,-1,-2,-2[a],-3,3,4,
3,4,-3b,-2,-4,-1,1,-2,-2,-2,0,3,3,-2,-1,-2,-3,-2[a],3,4,
3,4,-3b,-2,-4,-1,1,-2,-2,-2,0,3,3,-2,-1,-2,-3,-2[a],3,4,
-2,3,4,-3b,-2,-4,-1,1,-2,-2,-2,0,3,3,-2,-1,-2,-3,-2[a],3,4,
-3,0,-3,-1,-2c[e],4,-2,-3,0,1,4,0,2,3[d],-4,

Observació
Avaluació sobre 10 punts:

• Solució lenta: 5 punts.

• solució ràpida: 10 punts.

Entenem com a solució ràpida una que és correcta, on totes les operacions tenen cost constant
(excepte l’escriptura de tota la llista per la sortida, que té cost lineal), i capaç de superar els
jocs de proves públics i privats. Entenem com a solució lenta una que no és ràpida, però és
correcta i capaç de superar els jocs de proves públics.

Informació del problema
Autoria: PRO2

Generació: 2026-01-27T18:54:25.374Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

