
Jutge.org
The Virtual Learning Environment for Computer Programming

Iteradors quàntics a la classe List X66290_ca

Típicament, executar ++ sobre un iterador que es troba al end de la llista produeix error
d’execució, i executar -- sobre un iterador que es troba al begin de la llista també produeix
error d’execució. Per començar, en aquest exercici modificarem la subclasse iterator de
la classe List de manera que els errors d’execució abans esmentats ja no es produiran. Sim-
plement, en tals casos els iteradors no es mouran.
Desprésmodificarem la classeiterator afegint dos nousmètodesentangle idisentangle
i canviant el comportament dels mètodes ++ i -- com descrivim a continuació.
El nou mètode entangle rebrà un altre iterator com a paràmetre (és a dir, un iterador
del mateix tipus, tot i que potser apunta a un element d’una llista diferent). Una crida
it0.entangle(it1) provocarà que it0 quedi enllaçat a it1 de manera que, a partir de
llavors, sempre que executem it0++ o ++it0, l’iterador it1 també es desplaçarà cap al
final de la seva llista corresponent (si no es troba ja al end). A més a més, sempre que ex-
ecutem it0-- o --it0, l’iterador it1 també es desplaçarà cap al principi de la seva llista
corresponent (si no es troba ja al begin).
Aquest efecte no es propaga per una seqüència d’enllaços. Per exemple, si hem executat
it0.entangle(it1) i it1.entangle(it2), executar it0++ mourà també it1 cap al
final de la seva llista, però això no es propagarà a moure it2 cap al final de la seva llista.
Successius entangle sobre un mateix iterador fan que només l’últim estigui actiu. Per ex-
emple, si hem executat it0.entangle(it1) i després it0.entangle(it2), llavors it0
està enllaçat a it2 però no a it1.
Una crida it0.disentangle() cancel.larà l’efecte de l’últim entangle actiu.
Fixeu-vos en aquest exemple per tal d’acabar d’entendre-ho:

List<int> l0, l1;
List<int>::iterator a, b, c, d;

l0.push_back(1); // l0: 1,
l0.push_back(2); // l0: 1,2,
l0.push_back(3); // l0: 1,2,3,
l1.push_back(4); // l1: 4,
l1.push_back(5); // l1: 4,5,
l1.push_back(6); // l1: 4,5,6,

a = l0.begin(); // l0: 1a,2,3,
b = l0.end(); // l0: 1a,2,3,b
c = l1.begin(); // l1: 4c,5,6,
d = l1.begin(); // l1: 4c,5,6,d

a--; // l0: 1a,2,3,b
a++; // l0: 1,2a,3,b
b++; // l0: 1,2a,3,b
b--; // l0: 1,2a,3b,
a.entangle(b);
a++; // l0: 1,2,3a,b
a++; // l0: 1,2,3,ab

a++; // l0: 1,2,3,ab
a--; // l0: 1,2,3ab,
b--; // l0: 1,2b,3a,
a--; // l0: 1b,2a,3,
a--; // l0: 1ab,2,3,
a--; // l0: 1ab,2,3,

a.entangle(c);
c.entangle(d);
a++; // l0: 1b,2a,3, l1: 4,5c,6,d
c++; // l0: 1b,2a,3, l1: 4,5,6c,d
c--; // l0: 1b,2a,3, l1: 4,5c,6d,
c--; // l0: 1b,2a,3, l1: 4c,5d,6,
a++; // l0: 1b,2,3a, l1: 4,5cd,6,
a++; // l0: 1b,2,3,a l1: 4,5d,6c,
a.disentangle();
a++; // l0: 1b,2,3,a l1: 4,5d,6c,
a--; // l0: 1b,2,3a, l1: 4,5d,6c,
c++; // l0: 1b,2,3a, l1: 4,5,6d,c
c.disentangle();
c++; // l0: 1b,2,3a, l1: 4,5,6d,c
c--; // l0: 1b,2,3a, l1: 4,5,6cd,

D’entre els fitxers que s’adjunten en aquest exercici, trobareu list.hh, a on hi ha una
implementació de la classe genèrica List. Haureu d’implementar els dos nous mètodes
entangle i disentangle dins list.hh a la part pública de la classe iterator (podeu
trobar les capçaleres comentades dinslist.hh), imodificar els dosmètodes++ i els dosmè-
todes-- convenientment (en realitat només calmodificar el pre-increment i el pre-decrement
perquè el post-increment i post-decrement criden als primers). Necessitareu també algun
atribut addicional per tal de recordar si l’iterador té un entangle actiu i amb qui, amb les
convenients inicialitzacions.
Més concretament, heu de fer els canvis que s’indiquen en algunes parts del codi de list.hh:

// Iterators mutables
class iterator {

friend class List;
private:

List *plist;
Item *pitem;
// Add what it takes to know if the iterator is entangled to another iterator and which one.

public:

iterator() {
// Add initialization of new attributes.

}

public:

// Adapt this function so that moving beyond boundaries does not trigger error,

// but leaves the iterator unchanged instead.
// Also, add the necessary adaptations so that, the (possible) entangled iterator
// moves accordingly.
// Preincrement
iterator operator++()
/* Pre: el p.i apunta a un element E de la llista,

que no és el end() */
/* Post: el p.i apunta a l'element següent a E

el resultat és el p.i. */
{

if (pitem == &(plist->itemsup)) {
cerr << "Error: ++iterator at the end of list" << endl;
exit(1);

}
pitem = pitem->next;
return *this;

}

...

// Adapt this function so that moving beyond boundaries does not trigger error,
// but leaves the iterator unchanged instead.
// Also, add the necessary adaptations so that, the (possible) entangled iterator
// moves accordingly.
// Predecrement
iterator operator--()
/* Pre: el p.i apunta a un element E de la llista que

no és el begin() */
/* Post: el p.i apunta a l'element anterior a E,

el resultat és el p.i. */
{

if (pitem == plist->iteminf.next) {
cerr << "Error: --iterator at the beginning of list" << endl;
exit(1);

}
pitem = pitem->prev;
return *this;

}

...

// Pre: 'it' != 'this'
// Post: Once executed, any move (++ or --) on 'this' will affect 'it' the same way.
// Any previous entangle or disentangle is cancelled.
// Remove comment marks and implement this function:
// void entangle(iterator &it) {
// }

// Pre: 'this' is entangled

// Post: Previous entangle is cancelled.
// Remove comment marks and implement this function:
// void disentangle() {
// }

...

No cal decidir que passa amb assignacions entre iteradors existents, doncs no es consideraran
en els jocs de proves.
D’entre els fitxers que s’adjunten a l’exercici també hi ha main.cc (programa principal), i
el podeu compilar directament, doncs inclou list.hh. Només cal que pugeu list.hh al
jutge.

Entrada
L’entrada del programa comença amb una declaració d’unes quantes llistes (l0, l1, ...)
i uns quants iteradors (a,b,c,...), i després té una seqüència de comandes sobre les
llistes i els iteradors declarats. Com que ja us oferim el main.cc, no cal que us preocu-
peu d’implementar la lectura d’aquestes entrades. Només cal que implementeu la extensió
de la classe iterator abans esmentada.
Per simplificar, no hi haurà comandes que eliminin elements de les llistes, com pop_back,
pop_front i erase. Podeu suposar que les comandes no fan coses extranyes, com fer
que un iterador estigui enllaçat per entangle a si mateix, i que sempre que un iterador sigui
mogut (directament o indirectament per entangle), aquest estarà apuntant a alguna posició
d’alguna llista. Podeu suposar que les comandes faran disentangles només sobre iteradors
que tinguin un entangle actiu. Però pot ser el cas que es faci un entangle sobre una iterador
que ja tingui un entangle actiu. Com mencionavem abans, en aquestes situacions només
l’últim entangle aplica.

Sortida
Per a cada comandad’escriptura sobre la sortida s’escriurà el resultat corresponent. Elmain.cc
que us oferim ja fa això. Només cal que implementeu la extensió de la classeiterator abans
esmentada.

Exemple d’entrada 1
List<int> l0 , l1 ;
List<int>::iterator a , b , c , d ;
l0 .push_back(1);
l0 .push_back(2);
l0 .push_back(3);
l1 .push_back(4);
l1 .push_back(5);
l1 .push_back(6);
a = l0 .begin();
b = l0 .end();
c = l1 .begin();
d = l1 .end();
cout<< l0 <<endl;
cout<< l1 <<endl;
a --;
cout<< l0 <<endl;
cout<< l1 <<endl;

a ++;
cout<< l0 <<endl;
cout<< l1 <<endl;
b ++;
cout<< l0 <<endl;
cout<< l1 <<endl;
b --;
cout<< l0 <<endl;
cout<< l1 <<endl;
a .entangle(b);
a ++;
cout<< l0 <<endl;
cout<< l1 <<endl;
a ++;
cout<< l0 <<endl;
cout<< l1 <<endl;
a ++;
cout<< l0 <<endl;

cout<< l1 <<endl;
a --;
cout<< l0 <<endl;
cout<< l1 <<endl;
b --;
cout<< l0 <<endl;
cout<< l1 <<endl;
a --;
cout<< l0 <<endl;
cout<< l1 <<endl;
a --;
cout<< l0 <<endl;
cout<< l1 <<endl;
a --;
cout<< l0 <<endl;
cout<< l1 <<endl;
a .entangle(c);
c .entangle(d);
a ++;
cout<< l0 <<endl;
cout<< l1 <<endl;
c ++;
cout<< l0 <<endl;
cout<< l1 <<endl;
c --;
cout<< l0 <<endl;
cout<< l1 <<endl;
c --;
cout<< l0 <<endl;
cout<< l1 <<endl;
a ++;
cout<< l0 <<endl;
cout<< l1 <<endl;
a ++;
cout<< l0 <<endl;
cout<< l1 <<endl;
a .disentangle();
a ++;
cout<< l0 <<endl;
cout<< l1 <<endl;
a --;
cout<< l0 <<endl;
cout<< l1 <<endl;
c ++;
cout<< l0 <<endl;
cout<< l1 <<endl;
c .disentangle();
c ++;
cout<< l0 <<endl;
cout<< l1 <<endl;
c --;
cout<< l0 <<endl;
cout<< l1 <<endl;

Exemple de sortida 1
1a,2,3,b
4c,5,6,d
1a,2,3,b
4c,5,6,d
1,2a,3,b
4c,5,6,d
1,2a,3,b
4c,5,6,d
1,2a,3b,
4c,5,6,d
1,2,3a,b
4c,5,6,d
1,2,3,ab
4c,5,6,d
1,2,3,ab
4c,5,6,d
1,2,3ab,
4c,5,6,d
1,2b,3a,
4c,5,6,d
1b,2a,3,
4c,5,6,d
1ab,2,3,
4c,5,6,d
1ab,2,3,
4c,5,6,d
1b,2a,3,
4,5c,6,d
1b,2a,3,
4,5,6c,d
1b,2a,3,
4,5c,6d,
1b,2a,3,
4c,5d,6,
1b,2,3a,
4,5cd,6,
1b,2,3,a
4,5d,6c,
1b,2,3,a
4,5d,6c,
1b,2,3a,
4,5d,6c,
1b,2,3a,
4,5,6d,c
1b,2,3a,
4,5,6d,c
1b,2,3a,
4,5,6cd,

Exemple d’entrada 2
List<int> l0 , l1 , l2 ;
List<int>::iterator a , b , c ;
a = l1 .begin();
b = l1 .begin();
c = l0 .begin();

l2 .push_front(3);
-- a ;
cout<< l1 <<endl;
b .entangle(a);
++ b ;
c ++;

cout<< l1 <<endl;
l0 .insert(c , -4);
-- a ;
l1 .push_back(0);
cout<< l0 <<endl;
a .entangle(c);
b ++;
l0 .push_front(-2);
c --;
b .entangle(a);
++ a ;
l0 .insert(c , 3);
b = l2 .end();
cout<< l0 <<endl;
++ a ;
l2 .push_back(2);
l1 .push_back(2);
l2 .push_front(1);
a --;
l0 .push_front(2);
l0 .push_front(-3);
b .entangle(c);
c .entangle(b);
c .entangle(a);
a --;
l0 .push_front(3);
l1 .push_front(-2);
++ c ;
a = l0 .begin();
l0 .push_front(-2);
cout<< l2 <<endl;
b --;
l0 .insert(a , 2);
cout<< l1 <<endl;
cout<< l2 <<endl;
b --;
a --;
b .disentangle();
l1 .push_front(-1);
l2 .push_front(1);
cout<< l2 <<endl;
b .entangle(a);
l2 .insert(b , 4);
++ b ;
c ++;
l2 .push_back(4);
-- a ;
l2 .insert(b , 0);
l2 .push_back(-3);
l2 .push_front(-1);
cout<< l2 <<endl;
l2 .push_front(-3);
l1 .push_front(1);
a --;
c = l1 .end();
cout<< l1 <<endl;
c .entangle(a);
b = l1 .begin();
a = l2 .end();
l2 .push_front(-1);
l2 .push_back(4);

l1 .insert(b , -2);
cout<< l0 <<endl;
c ++;
c ++;
l0 .push_front(-4);
cout<< l2 <<endl;
c .entangle(a);
l2 .insert(a , 0);
++ c ;
cout<< l1 <<endl;
b .entangle(a);
c = l1 .begin();
a --;
l2 .insert(a , -2);
cout<< l0 <<endl;
c ++;
c .entangle(b);
l2 .push_back(4);
c .entangle(b);
b .entangle(c);
-- a ;
l1 .insert(b , -1);
b .entangle(c);
l1 .push_back(-2);
c ++;
cout<< l0 <<endl;
-- a ;
l1 .push_front(-1);
cout<< l2 .size()<<endl;
-- b ;
l1 .insert(c , -1);
-- a ;
b .entangle(a);
l1 .insert(b , -4);
b --;
++ c ;
l0 .push_back(0);
b = l1 .begin();
c --;
cout<< l1 <<endl;
c .entangle(a);
++ a ;
c = l2 .begin();
l2 .push_back(-2);
cout<< l2 <<endl;
a = l0 .end();
l0 .insert(a , -3);
l1 .push_back(4);
a = l2 .end();
b .entangle(c);
++ c ;
cout<< l2 <<endl;
cout<< l2 .size()<<endl;
b .entangle(c);
b ++;
b ++;
b .disentangle();
l0 .push_back(2);
l2 .insert(a , -1);
l2 .push_back(2);
b .entangle(c);

a .entangle(c);
c --;
l2 .push_front(-3);
-- b ;
b .entangle(c);
cout<< l2 <<endl;
l1 .push_front(-2);
l0 .push_front(0);
c --;
c --;
b ++;
l1 .insert(b , -3);
l2 .push_front(-1);
cout<< l2 <<endl;
cout<< l2 <<endl;
l1 .insert(b , 1);
l2 .insert(c , 3);
a .entangle(c);
c --;
cout<< l1 <<endl;
b --;
l2 .push_front(4);
c = l1 .end();
c .entangle(b);
a ++;
a --;
l2 .push_back(-4);
a = l0 .begin();
cout<< l0 <<endl;
a --;
cout<< l2 .size()<<endl;
l0 .push_back(0);
cout<< l2 <<endl;
c .entangle(b);
l2 .push_front(0);
a ++;
l2 .push_front(-4);
a = l1 .end();
cout<< l1 .size()<<endl;
a .entangle(c);
l1 .push_back(-3);
l1 .push_back(2);
l2 .push_front(1);
a .entangle(b);
a = l2 .end();
l2 .push_front(1);
l0 .push_back(3);
l1 .insert(b , 3);
cout<< l2 <<endl;
l2 .insert(a , 3);
c = l0 .end();
l0 .insert(c , -4);
a --;
l2 .push_back(-4);
cout<< l1 <<endl;
l0 .push_front(0);
l0 .push_back(-4);
l0 .insert(c , 3);
++ a ;
l1 .push_front(-4);
l1 .push_front(3);

l1 .insert(b , 1);
cout<< l1 <<endl;
l1 .push_back(0);
l1 .push_back(2);
l2 .push_back(3);
l2 .insert(a , 1);
l1 .push_front(4);
-- b ;
l0 .insert(c , -4);
l2 .push_back(4);
cout<< l1 <<endl;
cout<< l0 <<endl;
cout<< l1 <<endl;
cout<< l2 <<endl;

Exemple de sortida 2
ab
ab
-4,c
-2,-4,3,c
1,3,2,b
-2,0,2,
1,3,2b,
1,1,3b,2,
-1,1,1,4,3,0,2b,4,-3,
1,-1,-2,0,2,c
-2,2,3,-3,2,-2,-4,3,
-1,-3,-1,1,1,4,3,0,2,4,-3,4,a
-2,1b,-1,-2,0,2,c
-4,-2,2,3,-3,2,-2,-4,3,
-4,-2,2,3,-3,2,-2,-4,3,
15
-1b,-2,-1,-1,-4,1c,-1,-2,0,2,-2,

-1c,-3,-1,1,1,4,3,0,2,4,-3a,4,-2,0,4,-2,
-1,-3c,-1,1,1,4,3,0,2,4,-3,4,-2,0,4,-2,a
16
-3,-1,-3c,-1,1,1,4,3,0,2,4,-3,4,-2,0,4,-2,-1,2,a
-1,-3,-1c,-3,-1,1,1,4,3,0,2,4,-3,4,-2,0,4,-2,-1,2,a
-1,-3,-1c,-3,-1,1,1,4,3,0,2,4,-3,4,-2,0,4,-2,-1,2,a
-2,-1,-2,-3,1,-1b,-1,-4,1,-1,-2,0,2,-2,4,
0a,-4,-2,2,3,-3,2,-2,-4,3,0,-3,2,
23
4,-1,-3,3,-1,-3,-1,1,1,4,3,0,2,4,-3,4,-2,0,4,-2,-1,2,-4,
15
1,1,-4,0,4,-1,-3,3,-1,-3,-1,1,1,4,3,0,2,4,-3,4,-2,0,4,-2,-1,2,-4,a
-2,-1,-2,-3,3,1b,-1,-1,-4,1,-1,-2,0,2,-2,4,-3,2,
3,-4,-2,-1,-2,-3,3,1,1b,-1,-1,-4,1,-1,-2,0,2,-2,4,-3,2,
4,3,-4,-2,-1,-2,-3,3,1b,1,-1,-1,-4,1,-1,-2,0,2,-2,4,-3,2,0,2,
0,0,-4,-2,2,3,-3,2,-2,-4,3,0,-3,2,0,3,-4,-4,-4,3c,
4,3,-4,-2,-1,-2,-3,3,1b,1,-1,-1,-4,1,-1,-2,0,2,-2,4,-3,2,0,2,
1,1,-4,0,4,-1,-3,3,-1,-3,-1,1,1,4,3,0,2,4,-3,4,-2,0,4,-2,-1,2,-4,3,1,-4a,3,4,

Observació
Avaluació sobre 10 punts:

• Solució lenta: 5 punts.

• solució ràpida: 10 punts.

Entenem com a solució ràpida una que és correcta, on totes les operacions tenen cost constant
(excepte l’escriptura de tota la llista per la sortida, que té cost lineal), i capaç de superar els
jocs de proves públics i privats. Entenem com a solució lenta una que no és ràpida, però és
correcta i capaç de superar els jocs de proves públics.

Informació del problema
Autoria: PRO2

Generació: 2026-01-27T18:54:19.539Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

