
Jutge.org
The Virtual Learning Environment for Computer Programming

Classe conjunt d’enters X65108_ca

Cal implementar la següent classe 𝑐𝑗_𝑒𝑛𝑡𝑒𝑟𝑠 que ens permet representar i manipular conjunts
d’enters (no importa l’ordre dels enters i no poden haver-hi enters repetits):
#include <iostream>
using namespace std;

class cj_enters {

public:

// Constructora per defecte. Crea un conjunt buit.
cj_enters ();

// Les tres grans: Constructora per còpia, destructora, operador d’assignació
cj_enters (const cj_enters &cj);
~ cj_enters ();
cj_enters& operator=(const cj_enters &cj);

// Insereix l’enter e en el conjunt. Si e ja pertanyia al conjunt, el mètode no fa res.
void insereix (int e);

// Unió, intersecció i diferència de conjunts. Operen modificant el conjunt sobre el que
// s’aplica el mètode, usant el segon conjunt com argument. P.e.: a.restar(b) fa que el
// nou valor d’a sigui A - B, on A i B són els valors originals dels objectes a i b.
void unir(const cj_enters& B);
void intersectar (const cj_enters& B);
void restar (const cj_enters& B);

// Unió, intersecció i diferència de conjunts. Operen creant un nou conjunt sense
// modificar el conjunt sobre el que s’aplica el mètode. La suma de conjunts
// correspon a la unió, la resta a la diferència i el producte a la intersecció.
cj_enters operator+(const cj_enters& B) const;
cj_enters operator∗(const cj_enters& B) const;
cj_enters operator−(const cj_enters& B) const;

// Retorna cert si i només si e pertany al conjunt.
bool conte(int e) const;

// Retornen els elements màxim i mínim del conjunt, respectivament.
// El seu comportament no està definit si el conjunt és buit.
int max() const;
int min() const;

// Retorna el nombre d’elements (la cardinalitat) del conjunt.
int card() const;



// Operadors relacionals. == retorna cert si i només si els dos conjunts
// (el paràmetre implícit i B) contenen els mateixos elements;
// != retorna cert si i només si els conjunts són diferents.
bool operator==(const cj_enters& B) const;
bool operator!=(const cj_enters& B) const;

// Imprimeix el conjunt d’enters, ordenats en ordre ascendent, sobre
// el canal de sortida os; el format és [e1 e2 ... en], és a dir, amb
// espais entre els elements i tancant la seqüència amb corxets.
void print(ostream& os) const;

private:
// Cal definir els atributs i mètodes privats dins del fitxer .rep
#include "cj_enters.rep"

};

Bàsicament el que cal fer és:

1. Trobar una representació adequada pels objectes de la classe i escriure els atributs nec-
essaris en la part 𝑝𝑟𝑖𝑣𝑎𝑡𝑒 de la classe (dins del fitxer 𝑐𝑗_𝑒𝑛𝑡𝑒𝑟𝑠.𝑟𝑒𝑝). També es poden
especificar mètodes privats addicionals.

2. Implementar tots els mètodes de la classe els quals manipularan la representació ante-
rior dins del fitxer 𝑐𝑗_𝑒𝑛𝑡𝑒𝑟𝑠.𝑐𝑝𝑝.

Cal enviar la solució (els fitxers 𝑐𝑗_𝑒𝑛𝑡𝑒𝑟𝑠.𝑟𝑒𝑝 i 𝑐𝑗_𝑒𝑛𝑡𝑒𝑟𝑠.𝑐𝑝𝑝) comprimida en un sol fitxer .𝑡𝑎𝑟
Per testejar la classe disposeu d’un programa principal que processa blocs que contenen dos
conjunts 𝐴 i 𝐵 i vàries comandes que els manipulen.

Entrada
L’entrada conté varis blocs separats per línies amb 10 guions (———–). Cada bloc consisteix
en dues seqüències d’enters, una per línia, cadascuna d’elles són els elements que tindran
originalment el conjunt 𝐴 i el conjunt 𝐵. A continuació segueixen vàries comandes, una per
línea, amb el següent format:

• insereix cjt1 e

• conte cjt1 e

• max cjt1

• min cjt1

• card cjt1

• unir cjt1 cjt2

• intersectar cjt1 cjt2

• restar cjt1 cjt2

• + cjt1 cjt2



• * cjt1 cjt2

• - cjt1 cjt2

• == cjt1 cjt2

• !=cjt1 cjt2

• print cjt1

On cjt1 i cjt2 poden ser ’A’ o ’B’.

Sortida
Per a cada línia d’entrada, escriu una línia amb el resultat:

• Si la línia és un conjunt, mostra el conjunt un cop inserit tots els seus elements.

• Si la línia és una comanda, mostra la comanda, el separador ”: ” i el resultat. Si la
comanda retorna o modifica algun conjunt, mostra aquest conjunt.

• Si la línia és el separador de blocs format per 10 guions, mostra els mateixos 10 guions.

Observació
Aquest problemaproporciona la definició pública de la classe 𝑐𝑗_𝑒𝑛𝑡𝑒𝑟𝑠dins del fitxer 𝑐𝑗_𝑒𝑛𝑡𝑒𝑟𝑠.ℎ𝑝𝑝,
el programa principal 𝑚𝑎𝑖𝑛.𝑐𝑝𝑝 i un fitxer 𝑀𝑎𝑘𝑒𝑓 𝑖𝑙𝑒 per facilitar la compilació.
Per implementar el conjunt no es poden usar les classes 𝑠𝑡𝑎𝑐𝑘, 𝑞𝑢𝑒𝑢𝑒, 𝑙𝑖𝑠𝑡 o 𝑠𝑒𝑡 de la STL.
Pots fer un parell de versions, una implementada amb memòria estàtica (usant per exemple
arrays de C++) i una altra implementada ambmemòria dinàmica. Si la versió ambmemòria
estàtica té un límit en el màxim nombre d’element d’un conjunt, segurament no passarà els
jocs de prova privats on hi ha casos amb conjunts molt grans.
Si els mètodes d’unir, intersectar, restar, igualtat i diferència no es programen de forma
eficient (cost lineal) tampoc passaran els jocs de prova privats degut a un excés de temps
d’execució.

Exemple d’entrada 1

1
conte A 0
conte A 1
conte B 0
conte B 1
max B
min B
card A
card B
----------
4 -8 12 -6 14 0
1 -5 13 12 -8
conte A 0
conte A 1
conte B 0
conte B 1
max A

min A
max B
min B
card A
card B



Exemple de sortida 1
[]
[1]
conte A 0: 0
conte A 1: 0
conte B 0: 0
conte B 1: 1
max B: 1
min B: 1
card A: 0
card B: 1
----------

[-8 -6 0 4 12 14]
[-8 -5 1 12 13]
conte A 0: 1
conte A 1: 0
conte B 0: 0
conte B 1: 1
max A: 14
min A: -8
max B: 13
min B: -8
card A: 6
card B: 5

Exemple d’entrada 2

1
insereix B 1
conte B 0
conte B 1
max B
min B
card B
insereix B 0
conte B 0
conte B 1
max B
min B
card B
+ A A
* A A
- A A
== A A
!= A A
+ B B
* B B
- B B
== B B
!= B B
+ A B
* A B
- A B
- B A
== A B
!= A B
unir A B
intersectar A B
restar A B
----------
4 -8 12 -6 14 0
1 -5 13 12 -8
+ A A
* A A
- A A
== A A
!= A A
+ B B
* B B
- B B
== B B

!= B B
+ A B
* A B
- A B
- B A
== A B
!= A B
unir A B
intersectar A B
restar A B
----------
4 -8 12
12 -8 4
== A B
!= A B



Exemple de sortida 2
[]
[1]
insereix B 1: [1]
conte B 0: 0
conte B 1: 1
max B: 1
min B: 1
card B: 1
insereix B 0: [0 1]
conte B 0: 1
conte B 1: 1
max B: 1
min B: 0
card B: 2
+ A A: []
* A A: []
- A A: []
== A A: 1
!= A A: 0
+ B B: [0 1]
* B B: [0 1]
- B B: []
== B B: 1
!= B B: 0
+ A B: [0 1]
* A B: []
- A B: []
- B A: [0 1]
== A B: 0

!= A B: 1
unir A B: [0 1]
intersectar A B: [0 1]
restar A B: []
----------
[-8 -6 0 4 12 14]
[-8 -5 1 12 13]
+ A A: [-8 -6 0 4 12 14]
* A A: [-8 -6 0 4 12 14]
- A A: []
== A A: 1
!= A A: 0
+ B B: [-8 -5 1 12 13]
* B B: [-8 -5 1 12 13]
- B B: []
== B B: 1
!= B B: 0
+ A B: [-8 -6 -5 0 1 4 12 13 14]
* A B: [-8 12]
- A B: [-6 0 4 14]
- B A: [-5 1 13]
== A B: 0
!= A B: 1
unir A B: [-8 -6 -5 0 1 4 12 13 14]
intersectar A B: [-8 -5 1 12 13]
restar A B: []
----------
[-8 4 12]
[-8 4 12]
== A B: 1
!= A B: 0

Informació del problema
Autoria: Jordi Esteve

Generació: 2026-01-25T21:20:28.065Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

