Jutge.org

The Virtual Learning Environment for Computer Programming

Classe conjunt d’enters X65108_ca

Cal implementar la segtient classe cj_enters que ens permet representar i manipular conjunts
d’enters (no importa l'ordre dels enters i no poden haver-hi enters repetits):

#include <iostream>
using namespace std;

class cj_enters {
public:

// Constructora per defecte. Crea un conjunt buit.
cj_enters ();

// Les tres grans: Constructora per copia, destructora, operador d’assignacié
cj_enters (const cj_enters &cj);

~cj_enters ();

cj_enters & operator=(const cj_enters &cj);

// Insereix I’enter e en el conjunt. Si e ja pertanyia al conjunt, el meétode no fa res.
void insereix (int e);

// Uni6, intersecci6 i diferéncia de conjunts. Operen modificant el conjunt sobre el que
// s’aplica el metode, usant el segon conjunt com argument. Pe.: a.restar(b) fa que el
// nou valor d’a sigui A - B, on A i B s6n els valors originals dels objectes aib.

void unir(const cj_enters & B);

void intersectar (const cj_enters & B);

void restar (const cj_enters & B);

// Unio, interseccio i diferéncia de conjunts. Operen creant un nou conjunt sense
// modificar el conjunt sobre el que s’aplica el metode. La suma de conjunts

// correspon a la unié, la resta a la diferencia i el producte a la intersecci6.
cj_enters operator+ (const cj_enters& B) const;

cj_enters operatorx(const cj_enters& B) const;

cj_enters operator—(const cj_enters& B) const;

// Retorna cert si i només si e pertany al conjunt.
bool conte(int e) const;

// Retornen els elements maxim i minim del conjunt, respectivament.
// El seu comportament no esta definit si el conjunt és buit.

int max() const;

int min() const;

// Retorna el nombre d’elements (la cardinalitat) del conjunt.
int card() const;



// Operadors relacionals. == retorna cert si i només si els dos conjunts
// (el parametre implicit i B) contenen els mateixos elements;

// 1= retorna cert si i nomsés si els conjunts s6n diferents.

bool operator==(const cj_enters& B) const;

bool operator!=(const cj_enters& B) const;

// Imprimeix el conjunt d’enters, ordenats en ordre ascendent, sobre
// el canal de sortida os; el format és [el €2 ... en], és a dir, amb

// espais entre els elements i tancant la seqiiéncia amb corxets.

void print (ostreamé& os) const;

private:
// Cal definir els atributs i metodes privats dins del fitxer .rep
#include "cj_enters.rep"

Iy
Basicament el que cal fer és:

1. Trobar una representacié adequada pels objectes de la classe i escriure els atributs nec-
essaris en la part private de la classe (dins del fitxer cj_enters.rep). També es poden
especificar metodes privats addicionals.

2. Implementar tots els métodes de la classe els quals manipularan la representacié ante-
rior dins del fitxer cj_enters.cpp.

Cal enviar la soluci6 (els fitxers cj_enters.rep i cj_enters.cpp) comprimida en un sol fitxer .tar
Per testejar la classe disposeu d"un programa principal que processa blocs que contenen dos
conjunts A i B i varies comandes que els manipulen.

Entrada

L'entrada conté varis blocs separats per linies amb 10 guions (————). Cada bloc consisteix
en dues seqiiéncies d’enters, una per linia, cadascuna d’elles sén els elements que tindran
originalment el conjunt A i el conjunt B. A continuacié segueixen varies comandes, una per
linea, amb el segiient format:

e insereix cjtl e

e conte cjtl e

e max cjtl

e min ¢jtl

e card cjtl

e unir ¢jtl cjt2

e intersectar cjtl cjt2

e restar cjtl cjt2

+ qjtl qjt2



e *jtl gjt2

o -qjtl ¢jt2
o ==(jtl ¢jt2
o !=cjtl cjt2

e print ¢jtl

On ¢jtl i ¢jt2 poden ser ‘A’ 0 ‘B’

Sortida
Per a cada linia d’entrada, escriu una linia amb el resultat:
e Sila linia és un conjunt, mostra el conjunt un cop inserit tots els seus elements.

e Sila linia és una comanda, mostra la comanda, el separador ”: ” i el resultat. Si la
comanda retorna o modifica algun conjunt, mostra aquest conjunt.

e Silalinia és el separador de blocs format per 10 guions, mostra els mateixos 10 guions.

Observaci6

Aquest problema proporciona la definicié ptiblica de la classe cj_enters dins del fitxer cj_enters.hpp,
el programa principal main.cpp i un fitxer Makefile per facilitar la compilacio.

Per implementar el conjunt no es poden usar les classes stack, queue, list o set de la STL.

Pots fer un parell de versions, una implementada amb memoria estatica (usant per exemple
arrays de C++) i una altra implementada amb memoria dinamica. Sila versié amb memoria
estatica té un limit en el maxim nombre d’element d"un conjunt, segurament no passara els

jocs de prova privats on hi ha casos amb conjunts molt grans.

Si els metodes d’unir, intersectar, restar, igualtat i diferéncia no es programen de forma
eficient (cost lineal) tampoc passaran els jocs de prova privats degut a un excés de temps
d’execucié.

Exemple d’entrada 1 min A
max B
min B

1 card A

conte A 0 card B

conte A 1

conte B 0

conte B 1

max B

min B

card A

card B




Exemple de sortida 1

[]
[1]
conte
conte
conte
conte
max B: 1
min B: 1
card A: 0
card B: 1

ww
= o r o
= o oo

Exemple d’entrada 2

1

insereix B 1
conte B 0
conte B 1
max B

min B

card B
insereix B 0
conte B 0
conte B 1
max B

min B

card B

+ A A

* A A

- A A

== A A

'= A A

>*
W w w
W w w

unir A B
intersectar A B
restar A B

4 -8 12 -6 14 0
1 -5 13 12 -8

+ A A

* A A

- A A

= A A
'= A A

* + -
W w w
W w w

== B B

[-8 -6 0 4 12 14]
[-8 =5 1 12 13]

conte A 0: 1
conte A 1: O
conte B 0: O
conte B 1: 1
max A: 14
min A: -8
max B: 13
min B: -8
card A: 6
card B: 5

= B B

+ A B

* A B

- A B

- B A

== A B

!= A B

intersectar A B
restar A B

4 -8 12
12 -8 4
== A B
'= A B



Exemple de sortida 2 = aB: 1
unir A B: [0 1]
(] intersectar A B: [0 1]
[1] restar A B: []
insereix B 1: (11 o\ __________
conte B 0: O [-8 =6 0 4 12 14]
conte B 1: 1 [-8 -5 1 12 13]
max B: 1 + A A: [-8 -6 0 4 12 14]
min B: 1 * A A: [-8 -6 0 4 12 14]
card B: 1 - A A: []
insereix B 0: [0 1] — A A: 1
conte B 0: 1 1= A A: O
conte B 1: 1 + B B: [-8 -5 1 12 13]
max B: 1 * B B: [-8 -5 1 12 13]
min B: O - B B []
card B: 2 —— B B: 1
+ A A: [] 1= B B 0
* A A [] +AB: [-8 -6 -5 0 1 4 12 13 14]
- A A: [] * A B: [-8 12]
== A A: 1 - A B: [-6 0 4 14]
!'=ARA: 0 - B A: [-5 1 13]
+ B B: [0 1] —— A B: 0
* B B: [0 1] l= A B: 1
- B B: [] unir A B: [-8 -6 -5 0 1 4 12 13 14]
== B B: 1 intersectar A B: [-8 -5 1 12 13]
!= B B: 0 restar A B: []
+AB: [01]
* A B: [] [-8 4 12]
- A B: [] [-8 4 12]
- B A: [0 1] == A B: 1
== A B: O != A B: O

Informacié del problema

Autoria: Jordi Esteve
Generacid: 2026-01-25T21:20:28.065Z2

© Jutge.org, 2006-2026.
https://jutge.org


https://jutge.org

