
Jutge.org
The Virtual Learning Environment for Computer Programming

Redispersió en taules de dispersió amb sinònims encadenats indi-
rectes X64175_ca

Donada la classe 𝑑𝑖𝑐𝑐 que permet gestionar diccionaris amb claus enteres, cal implementar
els mètodes:

// Pre: Cert
// Post: Retorna el factor de càrrega de la taula de dispersió
float factor_de_carrega () const;

// Pre: Cert
// Post: Redimensiona la taula de dispersió amb una mida el doble que
// l’anterior més un (_M => 2*_M+1)
void redispersio ();

Els diccionaris s’implementen amb taules de dispersió amb sinònims encadenats indirectes.
Les llistes de sinònims estan ordenades per la clau.
Cal enviar a jutge.org la següent especificació de la classe 𝑑𝑖𝑐𝑐 i la implementació delsmètodes
dins del mateix fitxer (la resta de mètodes públics ja estan implementats).
#include <iostream>
using namespace std;
typedef unsigned int nat;

class dicc {
// Taula de dispersió sinònims encadenats indirectes
// Les llistes de sinònims estan ordenades per clau
public:
// Constructora per defecte. Crea un diccionari buit
// en una taula de dispersió de mida m > 0
dicc(nat m);

// Destructora
~dicc();

// Retorna quants elements (claus) té el diccionari.
nat quants() const;

// Impressió per cout de totes les claus del diccionari segons l’ordre
// en que estan a cadascuna de les llistes encadenades indirectes
void print() const;

// Pre: Cert
// Post: Insereix la clau k en el diccionari. Si ja hi era, no fa res.
// Redimensiona la taula de dispersió amb una mida el doble que
// l’anterior més un si el factor de càrrega és superior a 0.8
void insereix (const int &k);



// Pre: Cert
// Post: Retorna el factor de càrrega de la taula de dispersió
float factor_de_carrega () const;

// Pre: Cert
// Post: Redimensiona la taula de dispersió amb una mida el doble que
// l’anterior més un (_M => 2*_M+1)
void redispersio ();

private:
struct node_hash {
int _k ; // Clau
node_hash∗ _seg ;

};
node_hash ∗∗_taula ; // Taula amb punters a les llistes de sinònims
nat _M; // Mida de la taula
nat _quants; // Nº d’elements guardats al diccionari

static long const MULT = 31415926;

// Calcula un valor de dispersió entre 0 i LONG_MAX a partir de k
static long h(int k);

// Destrueix la llista de nodes apuntats per p
static void esborra_nodes(node_hash ∗p);

// Aquí va l’especificació dels mètodes privats addicionals

};

// Aquí va la implementació dels mètodes públics factor_de_carrega, redispersio i
// dels mètodes privats addicionals
};

Degut a que jutge.org només permet l’enviament d’un fitxer amb la solució del problema,
en el mateix fitxer hi ha d’haver l’especificació de la classe i la implementació dels mètodes
𝑓 𝑎𝑐𝑡𝑜𝑟_𝑑𝑒_𝑐𝑎𝑟𝑟𝑒𝑔𝑎 i 𝑟𝑒𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜 (el que normalment estarien separats en els fitxers .ℎ𝑝𝑝 i .𝑐𝑝𝑝).
Per testejar la classe disposes d’un programa principal que llegeix un conjunt d’elements,
els insereix en un diccionari i mostra el seu contingut, desprès llegeix un segon conjunt
d’elements, els insereix en el mateix diccionari i mostra novament el seu contingut.

Entrada
L’entrada té tres línies: la primera conté un natural positiu amb la dimensió inicial de la
taula de dispersió i les altres dos contenen enters separats amb espais, són els enters que
s’insereixen en el diccionari.



Sortida
Escriu el contingut del diccionari dos vegades: desprès d’inserir el primer conjunt d’enters
i desprès d’inserir el segon conjunt d’enters. Cada vegada es mostra en diferents línies la
quantitat d’elements que té i els elements que conté cadascuna de les llistes de sinònims
encadenats indirectes (els elements de cada llista apareixen separats amb un espai i en el
mateix ordre en que es guarden).

Observació
Per calcular el valor de dispersió utilitza el mètode ℎ que ja està implementat i que permet
calcular un valor de dispersió entre 0 i 𝐿𝑂𝑁𝐺_𝑀𝐴𝑋 (el valor long int més gran que permet
el compilador) a partir d’una clau entera.
Només cal enviar la classe requerida i la implementació dels mètodes 𝑓 𝑎𝑐𝑡𝑜𝑟_𝑑𝑒_𝑐𝑎𝑟𝑟𝑒𝑔𝑎 i
𝑟𝑒𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜. Pots ampliar la classe amb mètodes privats. Segueix estrictament la definició de
la classe de l’enunciat.

Exemple d’entrada 1
13
5 -3 8 2 -1 7 -7 -6
7 -2 9 5 -3 2 -7 4

Exemple de sortida 1
Nº elem: 8
Factor de càrrega: 0.615385
0: -1 7
1:
2:
3: 8
4:
5: -3 2
6: -6 5
7:
8:
9: -7
10:
11:
12:
-----------
Nº elem: 11
Factor de càrrega: 0.407407
0: -1
1:
2:
3:
4: -3 -2 2
5: 7
6:
7: -7
8:
9:
10: 9
11:
12:
13: 8
14:
15: -6 5
16:
17:
18:
19: 4
20:



21:
22:
23:
24:

25:
26:
-----------

Exemple d’entrada 2
29
5 -5 3 -3 9 -9 2 -2 -5 5 1 -1 7 -7 0 4 -4 8 -8 6 -6
2 11 4 12 8 14 0 10 17 13

Exemple de sortida 2
Nº elem: 19
Factor de càrrega: 0.655172
0: -1 0
1:
2: -2 1 9
3: -7 6
4: -3 2
5:
6:
7: -8 7
8: -4 3
9:
10:
11: -6 5
12:
13:
14:
15:
16:
17: -9 -5 4 8
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
-----------
Nº elem: 25
Factor de càrrega: 0.423729
0: -1 0
1:
2:
3:
4:
5:
6: 9
7:
8: -5 4
9:
10: 17
11:
12: -6 5
13:
14:
15:
16: 10
17:
18:
19: -4 3



20: 12
21:
22:
23: -2 1
24:
25: -9 8
26:
27:
28:
29:
30:
31: 11
32:
33:
34:
35:
36:
37:
38:
39: -3 2

40:
41:
42:
43:
44:
45:
46:
47:
48: 13
49: -8 7
50:
51:
52: -7 6
53: 14
54:
55:
56:
57:
58:
-----------

Exemple d’entrada 3
13
5 -5 3 -3 9 -9 2 -2 -5 5 1 -1 7 -7 0 4 -4 8 -8 6 -6
2 11 4 12 8 14 0 10 17 13

Exemple de sortida 3
Nº elem: 19
Factor de càrrega: 0.703704
0: -1 0
1:
2:
3:
4: -3 -2 1 2
5: -8 7
6:
7: -7 6
8: -4 3
9:
10: 9
11:
12:
13: -9 8
14:
15: -6 5
16:
17:
18:
19: -5 4
20:
21:
22:
23:
24:
25:
26:
-----------
Nº elem: 25
Factor de càrrega: 0.454545
0: -1 0
1:
2:
3: -5 4
4:
5:



6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19: -2 1
20:
21:
22: -8 7
23:
24:
25: 10
26:
27:
28:
29:
30:

31:
32: -6 5
33:
34: 9
35:
36:
37:
38: 14
39:
40: 17
41: 11 12
42: -7 6
43: -9 8
44:
45: -4 3
46:
47:
48:
49: 13
50: -3 2
51:
52:
53:
54:
-----------

Informació del problema
Autoria: Jordi Esteve

Generació: 2026-01-25T17:26:16.814Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

