Jutge.org

The Virtual Learning Environment for Computer Programming

Simulacié d’un SO X58154 ca

Aquesta és lal'tltima part de la practica, en que haureu d’implementarla classe Processador.
Un processador és simplement un contenidor d’objectes de la classe Programa. El metode
més important és executa (int t), que fa que executi t unitats de temps dels programes
que té encuats. En realitat, una unitat de temps vol dir I'execucié d’una instruccié d'un
programa (o, si us ho estimeu més, una linia d’'un programa). Tenint en compte que un
processador pot tenir més d’un programa encuat, com gestiona un processador les t unitats
de temps?

El processador té programes encuats en una cua de prioritat. La prioritat (d'un programa) és
un enter més gran que zero: com més gran, més prioritari. Arabé, pot ser que dos programes
diferents en un processador tinguin la mateixa prioritat. En aquest cas, el programa més pri-
oritari de tots dos sera el que tingui I'identificador de programa més gran (els identificadors
son unics a cada programa dins d"un processador). Certament, és una manera arbitraria de
trencar I'empat.

Per exemple, si tenim un programaP1 ambl'id = 2iprioritat = 100, unprogramaP2
amb l'id = 4iprioritat = 90iun programa P3 ambl'id = 7iprioritat = 90,
I'ordre de prioritat sera P1, P3, P2. Es a dir, el més prioritari sera P1, després P3 i final-
ment P2.

El que fa el processador amb les t unitats de temps és el segiient: agafa el programa més
prioritari i I’executa, almenys, t unitats de temps. Pot passar que el programa acabi i no hagi
consumit les t unitats. En aquest cas, el programa ja ha acabat i el fa fora de la cua, i desencua
el segiient programa (per prioritat) i mira d’executar-lo les unitats de temps que li queden.
Aix0 ho va fent mentre li quedin programes i unitats de temps. Ara bé, també podria ser
que el programa hagués consumit totes les unitats de temps i que, tanmateix, no hagi encara
acabat. En aquest cas, el processador el que fara és tornar a encuar aquest programa, pero
li rebaixara la prioritat en 10 unitats. Per exemple, si tenia prioritat 47, el reencuara amb
prioritat 37. Com que la prioritat sempre ha de ser > 0, si aquesta rebaixa fa que la prioritat
sigui negativa, li posara prioritat 0.

Aixo fara que a la cua d'un processador hi hagi només programes que encara no han acabat.
Recordem que cada vegada que executem una instrucci6, retornarem l'estatus del programa,
que indicara si el programa ha acabat, i per quin motiu.

Us recordem que el registre STATUS pot tenir els segiients valors:

e -1 Pila plena.

e -2 Divisi6 per zero.

e -3 Desempilar pila buida.

e -5 Adreca fora de rang

e -8 Error lectura dispositiu.

e -9 Error escriptura dispositiu.

e -10 Programa acabat.



Un programa acaba de manera normal siretorna —10, pero pot tenir altres tipus d’incidéncies,
i tornara un estatus diferent de —10 pero també negatiu. En aquest cas, el programa també
haura acabat i haura de sortir fora de la cua de prioritats del processador i no podra ser
reencuat.

Cada vegada que un programa acaba, cal escriure el contingut del seu dispositiu (aixo ho
fem perqué la interficie dels programes ho simulem amb el dispositiu).

Basicament, heu d’implementar dos metodes: el que ja hem esmentat executa (int t),
i el métode encuaPrograma (Programaé& p), que, simplement, encua un programa a la
cua de prioritats.

Tingueu en compte que la gesti6 de les prioritats es fa mitjangant la cua de prioritats PriorityQueue<T>,
que encua per prioritats. Ara bé, per a fer-ho ha de poder comparar dues instancies del tipus
de la cua (en aquest cas, instancies de la classe Programa). Aixo ho fa assumint que tots els
tipus T amb que instanciem PriorityQueue<T> tenen l'operacié

bool T::compare(const T& t) const

implementada. Aquesta operacid, que ja tenieu definida al problema xX55206 (Test de la
classe Programa), ara agafa sentit. Si bé en el problema X55206 no calia que tornés un valor
concret, ara si que cal que torni cert/fals depenent de la definicié de prioritat que hem definit
anteriorment. Si teniu aquesta funcié ben definida, segons el que hem explicat, llavors la
gesti6 de la prioritat és transparent i la fa la classe PriorityQueue.

Fixeu-vos que l'enunciat d’aquest exercici ja ofereix uns fitxers que haureu d’utilitzar per a
compilar: Makefile, program.cpp, apartdeles versions * . o1d dels altres fitxers que heu
d’acabar d'implementar i BST . hpp. A més, per a fer aquesta part haureu de penjar també
les implementacions de les classes DispositiumemoriaBSTiPrograma, a més del fitxer
BST.cpp que heu fet en els passos anteriors.

Quan pugeu la vostra soluci6 al jutge, només cal que pugeu un tar construit aixi:

tar cf solution.tar memoriaBST.cpp memoriaBST.hpp BST.cpp dispositiu.cpp
dispositiu.hpp programa.cpp programa.hpp processador.cpp processador.hpp

Informacié del problema
Autoria: PRO1
Generacio: 2026-01-25T21:17:34.010Z

© Jutge.org, 2006-2026.
https:/ /jutge.org


https://jutge.org

