
Jutge.org
The Virtual Learning Environment for Computer Programming

Simulació d’un SO X58154_ca

Aquesta és la l’últimapart de la pràctica, en què haureud’implementar la classeProcessador.
Un processador és simplement un contenidor d’objectes de la classe Programa. El mètode
més important és executa(int t), que fa que executi t unitats de temps dels programes
que té encuats. En realitat, una unitat de temps vol dir l’execució d’una instrucció d’un
programa (o, si us ho estimeu més, una línia d’un programa). Tenint en compte que un
processador pot tenir més d’un programa encuat, com gestiona un processador les t unitats
de temps?
El processador té programes encuats en una cua de prioritat. La prioritat (d’un programa) és
un entermés gran que zero: commés gran, més prioritari. Ara bé, pot ser que dos programes
diferents en un processador tinguin la mateixa prioritat. En aquest cas, el programamés pri-
oritari de tots dos serà el que tingui l’identificador de programa més gran (els identificadors
són únics a cada programa dins d’un processador). Certament, és una manera arbitrària de
trencar l’empat.
Per exemple, si tenim un programa P1 amb l’id = 2 i prioritat = 100, un programa P2
amb l’id = 4 i prioritat = 90 i un programa P3 amb l’id = 7 i prioritat = 90,
l’ordre de prioritat serà P1, P3, P2. És a dir, el més prioritari serà P1, després P3 i final-
ment P2.
El que fa el processador amb les t unitats de temps és el següent: agafa el programa més
prioritari i l’executa, almenys, t unitats de temps. Pot passar que el programa acabi i no hagi
consumit les t unitats. En aquest cas, el programa ja ha acabat i el fa fora de la cua, i desencua
el següent programa (per prioritat) i mira d’executar-lo les unitats de temps que li queden.
Això ho va fent mentre li quedin programes i unitats de temps. Ara bé, també podria ser
que el programa hagués consumit totes les unitats de temps i que, tanmateix, no hagi encara
acabat. En aquest cas, el processador el que farà és tornar a encuar aquest programa, però
li rebaixarà la prioritat en 10 unitats. Per exemple, si tenia prioritat 47, el reencuarà amb
prioritat 37. Com que la prioritat sempre ha de ser ≥ 0, si aquesta rebaixa fa que la prioritat
sigui negativa, li posarà prioritat 0.
Això farà que a la cua d’un processador hi hagi només programes que encara no han acabat.
Recordem que cada vegada que executem una instrucció, retornarem l’estatus del programa,
que indicarà si el programa ha acabat, i per quin motiu.
Us recordem que el registre STATUS pot tenir els següents valors:

• -1 Pila plena.

• -2 Divisió per zero.

• -3 Desempilar pila buida.

• -5 Adreça fora de rang

• -8 Error lectura dispositiu.

• -9 Error escriptura dispositiu.

• -10 Programa acabat.



Unprograma acaba demanera normal si retorna −10, però pot tenir altres tipus d’incidències,
i tornarà un estatus diferent de −10 però també negatiu. En aquest cas, el programa també
haurà acabat i haurà de sortir fora de la cua de prioritats del processador i no podrà ser
reencuat.
Cada vegada que un programa acaba, cal escriure el contingut del seu dispositiu (això ho
fem perquè la interfície dels programes ho simulem amb el dispositiu).
Bàsicament, heu d’implementar dos mètodes: el que ja hem esmentat executa (int t),
i el mètode encuaPrograma(Programa& p), que, simplement, encua un programa a la
cua de prioritats.
Tingueu en compte que la gestió de les prioritats es famitjançant la cuadeprioritatsPriorityQueue<T>,
que encua per prioritats. Ara bé, per a fer-ho ha de poder comparar dues instàncies del tipus
de la cua (en aquest cas, instàncies de la classe Programa). Això ho fa assumint que tots els
tipus T amb què instanciem PriorityQueue<T> tenen l’operació
bool T::compare(const T& t) const
implementada. Aquesta operació, que ja teníeu definida al problema X55206 (Test de la
classe Programa), ara agafa sentit. Si bé en el problema X55206 no calia que tornés un valor
concret, ara sí que cal que torni cert/fals depenent de la definició de prioritat que hem definit
anteriorment. Si teniu aquesta funció ben definida, segons el que hem explicat, llavors la
gestió de la prioritat és transparent i la fa la classe PriorityQueue.
Fixeu-vos que l’enunciat d’aquest exercici ja ofereix uns fitxers que haureu d’utilitzar per a
compilar: Makefile, program.cpp, apart de les versions *.old dels altres fitxers que heu
d’acabar d’implementar i BST.hpp. A més, per a fer aquesta part haureu de penjar també
les implementacions de les classes Dispositiu memoriaBST i Programa, a més del fitxer
BST.cpp que heu fet en els passos anteriors.
Quan pugeu la vostra solució al jutge, només cal que pugeu un tar construït així:

tar cf solution.tar memoriaBST.cpp memoriaBST.hpp BST.cpp dispositiu.cpp
dispositiu.hpp programa.cpp programa.hpp processador.cpp processador.hpp

Informació del problema
Autoria: PRO1

Generació: 2026-01-25T21:17:34.010Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

