Jutge.org

The Virtual Learning Environment for Computer Programming

Ajustar els salts de ++ i — a la classe List X57590_ca

Tipicament, l'operador ++ dels iteradors de la classe List els desplaca una unitat cap al fi-
nal de la llista, i l'operador —- dels iteradors de la classe List els desplaga una unitat cap al
principi de la llista.

En aquest exercici modificarem i extendrem la classe List. Afegirem dos nous metodes que
permetran modificar com es desplacen els iteradors, en sentit i nombre d’unitats, quan els hi
apliquem els operadors ++ i ——. Aquests dos nous métodes s’anomenen changePlusMove
i changeMinusMove, i tots dos reben un iterador it per referencia i un enter x. El valor
absolut de x indica quantes unitats es desplaga it quan se li aplica I'operador. A més, si x
és positiu, I'iterador s’ha de desplagar cap al seu sentit habitual (cap al final de la llista en el
cas de changePlusMove i ++, i cap al principi de la llista en el cas de changeMinusMove i
—-). En canvi, si x és negatiu, llavors el sentit del moviment és 1'oposat a 1’habitual.

A més a més, modificarem el comportament d’aquests operadors de manera que no pro-
dueixen error quan mirem de desplacar-los més enlla dels limits. En tals casos, simplement
no es mouran. Per exemple, si un iterador es troba al end de la llista i mirem de desplagar-lo
una o més unitats cap al final, simplement no es moura, sense produir error. I si un iter-
ador es troba al principi de la llista i mirem de desplagar-lo una o més unitats cap al principi,
simplement no es moura, sense produir error.

Fixeu-vos en el segiient exemple de programa i el seu comportament descrit en els seus co-
mentaris.

List<string> 1; // 1

1.push_back ("a"); // 1l: a

1.push_back ("b") ; // 1l: a,b

1.push_back ("c"); // 1l: a,b,c

1.push_back ("d") ; // 1: a,b,c,d
1l.push_back ("e") ; // 1l: a,b,c,d, e
1.push_back ("f"); // 1l: a,b,c,d,e, f
1.push_back ("g") ; // 1: a,b,c,d,e, f, g
l.push_back('h”) // 1l: a,b,c,d, e, f,9,h
List<string>::iterator it = l.begin(); // 1: (a),b,c,d,e, f,g,h
it++; // 1: a, (b),c,d,e, f,g,h
1.changePlusMove (it, 2);

it++; // 1: a,b,c, (d),e, f,g,h
it-—; // 1: a,b, (c),d, e, f,g,h
it++; // 1l: a,b,c,d, (e),f,g,h
1.changePlusMove (it, 5);

it++; // 1: a,b,c,d,e, £,g,h()
it++; // 1: a,b,c,d, e, f,g9,h()
1.changePlusMove (it, -1);

it++; // 1: a,b,c,d,e, f,qg, (h)
it++; // 1l: a,b,c,d,e, £, (g),h
1l.changePlusMove (it, -3);

it++; // 1l: a,b,c, (d),e, f,g,h
it++; // 1: (a),b,c,d,e, f,g,h
it++; // 1l: (a),b,c,d,e, f,g,h



it——; //
1.changeMinusMove (it, -2);

it——; !/
1.changeMinusMove (it, -3);

it——; //
it——; //
it——; //
1l.changeMinusMove (it, 1);

it——; //
it-—; // 1:

1:

(a) ,b,c,d, e, £,g9,h
a,b, (c),d,e, £f,g,h
a,b,C,d/e! (f>!glh
a,b,c,d, e, f,g,h()

a,b,c,d, e, f,g,h()

a,b,c,d, e f,qg, (h)
a,b,c,d, e, £, (g),h

D’entre els fitxers que s’adjunten en aquest exercici, trobareu 1ist .hh, a on hi ha una im-
plementaci6 de la classe genérica List. Haureu de buscar dins 1ist . hh les segiients linies:

//
//
//
//
//
//

//
//
//
//
//
//

Pre:

Post:

void changePlusMove (iterator &it,

}

Modifica el comportament de 1'operador ++ aplicat a aquest iterador it

que a partir d'aquest moment es desplaga x unitats cap al final.
Descomenteu les segients dues linies i implementeu el metode:

Pre:

Post:

void changeMinusMove (iterator &it,

}

int x)

Modifica el comportament de 1'operador —-- aplicat a aquest iterador it

que a partir d'aquest moment es desplaga x unitats cap al principi.
Descomenteu les segients dues linies i implementeu el metode:

int x)

{

Descomenteu les linies que s’indiquen i implementeu els meétodes. També caldra que modi-
fiqueu altres parts convenientment per tal de poder recordar si a un iterador en concret se li
ha modificat el seu moviment i com. També haureu d’adaptar els operadors ++ i —— conve-
nientment.
D’entre els fitxers que s’adjunten a I'exercici també hi ha main.cc (programa principal), i
el podeu compilar directament, doncs inclou 1ist.hh. Només cal que pugeu 1ist.hh al

jutge.

Entrada

L'entrada del programa té una seqiiéncia d’instruccions del segiient tipus que s’aniran apli-
cant sobre la llista i dos iteradors que se suposen situats inicialment al principi (i final) de la

llista:

push_front s (s és string)
push_back s (s és string)
pop_front

pop_back

itl = begin

itl
itl

itl++

end
erase itl



itl——

++itl

-—itl

*itl = s (s és string)

insert itl s (s és string)

cout << *itl

changePlusMove itl x (x és enter)
changeMinusMove itl x (x és enter)
it2 = begin

it2 = end

it2 = erase it2

it2++

it2--

++it2

-—it2

*it2 = x (x és string)

insert it2 x (x és string)

cout << *it2

changePlusMove it2 x (x és enter)
changeMinusMove it2 x (x és enter)
cout << 1

Se suposa que la seqiiéncia d’entrada sera correcta, és a dir, que no es produeixen errors
d’execuci6 si s’apliquen correctament sobre una llista i dos iteradors amb les condicions
abans esmentades.

El programa principal que us oferim ja s’encarrega de llegir aquestes entrades i fer les crides
als corresponents metodes de la classe list. Només cal que implementeu el metode sum abans
esmentat.

Sortida

Per a cada instruccié cout << *itl o cout << *it2 s’escriura el contingut apuntat per
l'iterador it1 o it2, respectivament. Per a cada instruccié cout << 1 s’escriura el con-
tingut de tota la llista. El programa que us oferim ja fa aix0o. Només cal que feu els canvis
abans esmentats.

Exemple d’entrada 1 push_back e
push_back f

cout << 1 push_back g

it}—— push_back h
T*ltl cout << 1
1t%++ itl = begin
f+1t1 cout << 1
it2—- itl--
——it2 i

-——itl
it2++ cout << 1
++it2 i

itl++
cout << 1 ++itl
push_back a cout << 1

o

push_back
push_back
cout << 1
push_back d

itl = begin

it2 = end

cout << 1
changePlusMove itl 2

Q




itl++

cout << 1

++itl

cout << 1

--itl

cout << 1

itl--

cout << 1

it2++

cout << 1

cout << *itl
changeMinusMove it2 2
it2—--

cout << 1

it2++

cout << 1

--it2

cout << 1
changePlusMove it2 -2
it2++

cout << 1
changePlusMove it2 -3
itl++

cout << 1

++it2

itl-—

-—itl

cout << 1
changeMinusMove it2 -2
push_front i
push_back j
push_front k
push_back 1
push_front m

cout << 1

itl = end
changePlusMove itl -2
changeMinusMove itl 2
itl++

itl--

--itl

++itl

it2++

++it2

it2—-

——it2

cout << 1

itl = begin

it2 = begin
changePlusMove itl 2
changePlusMove it2 2
changeMinusMove itl -1
changeMinusMove it2 -3
cout << *itl

cout << *it2

itl-—

itl--

it2--

it2—-

cout << 1

cout << *itl

cout << *it2
insert itl o
insert it2 p
cout << 1

pop_front
pop_back

cout << 1

itl-——

it2—-

cout << 1

itl = erase itl
it2 = erase it2
cout << 1

*itl = x

*it2 = vy

cout << 1

itl++

it2++

cout << 1

itl--

it2—-

cout << 1



Exemple de sortida 1

([1]

([1]

abc ([1)
abcdefgh ([])
(a) bcde £ gh []
(a) bcde £ gh []
ab (¢c) de £ gh []
(a) bcde f£f gh []
ab (¢c) de £f gh []
abcd(e) £fgh[]
aboc (d e fgh []
ab (¢c) de £f gh []
ab (¢c) de £f gh []
c

ab (¢c) de £ [g] h
ab (¢c) de £ g [h]

Exemple d’entrada 2

push_back hxc

insert itl v
push_front k
push_front dnx
push_front qy

insert itl bijo

itl--

changePlusMove itl 1
insert it2 dglx
pop_back

--it2

--itl

itl = begin
changePlusMove it2 4
insert itl ec
push_front tj

cout << *itl

itl = erase itl
push_front esop
changeMinusMove itl 1
itl = erase itl

*it2 = rpqge
push_front gqgd

*itl = gtb

it2++

push_back e

cout << 1

pop_front
changeMinusMove itl -3
cout << 1

push_front knbe
changePlusMove itl 1
pop_back

insert itl ikrb
push_front fdw
push_front c

cout << 1

push_front a
push_back g
changePlusMove itl -1

@
N N~ — 0O O O
(IO = = o )
Hh Hh
Q Q

0O 0V QQQ
o=y

[N

AN A~ A~ABOQREBEE33 -000
X O

00 == —9a -

T ~0a0uow

~~mT T aauo

0O 0 0000 =
I N N o)
XX o~ o m —

push_front sijp
changeMinusMove itl 1
pop_back

-—itl

changePlusMove itl 1
changeMinusMove it2 3
changeMinusMove it2 1
cout << *itl

--it2

*itl = gfou
changePlusMove itl -2
cout << 1

cout << 1

push_back rbr

*it2 = p

it2--

changePlusMove itl 2
*itl = t

push_front oejy
changeMinusMove itl 1
push_front agms
push_back y
push_front wgtt
push_back dlx

*itl = grrg

push_back lga

*itl = ho

push_front a
changeMinusMove it2 -4
push_back fju
push_back kx

*it2 = fndr

insert it2 ni

cout << *it2
push_back seb

cout << 1

it2++

changeMinusMove itl -4
cout << 1

push_front pviji
insert itl rozw

e

J



push_back asijy

cout << *itl

it2 = erase it2
push_back nt
push_front k

++it2

*itl = mgai
changePlusMove itl 3
-—-it2

push_back ybe
changePlusMove itl 2
pop_front

pop_front

push_front ssdi
push_back e

pop_back

insert it2 kfci
pop_back

cout << *itl

*itl = za

cout << *itl
push_front knwi
push_back hcdr
insert itl lpc

itl = erase itl

*itl = £

push_front ul
changeMinusMove itl 0
push_front ei

insert it2 k

insert itl g

itl-—

push_back vh

it2++

changePlusMove it2 4
cout << 1

push_front gmbn
changeMinusMove it2 0
*itl = s

push_back xwi

cout << 1

*itl = z

push_back ogou
insert it2 amgm
changeMinusMove itl -3
it2--

push_back x

insert it2 xgg
changeMinusMove itl -3
insert itl vya
push_front ojx
push_front 1f
push_back exzm
push_back ibxw

——it2

push_back kru
pop_front

*itl = e

insert it2 y
push_front m
push_back fp

push_back g
changeMinusMove itl 0
push_back h

push_back qggs
push_back algr
push_front bf
changePlusMove it2 0
push_front ey
push_back a
changeMinusMove itl 1
push_back ios
push_back ssdu

itl = erase itl
push_back evm
changePlusMove it2 -1
push_front gxz
changePlusMove it2 1
push_back pb

cout << 1

push_front gz
push_back uz

*itl = z

push_back cl
push_front iuyj

cout << 1

push_back fj
changeMinusMove itl 0
changePlusMove it2 -3
cout << *itl
changeMinusMove itl 4
push_front tw
push_back kva

++itl

push_front n

cout << 1

insert it2 uyv

cout << 1



Exemple de sortida 2

ay

ggd esop tj ec (gtb) hxc v rpge e []

esop tj ec (gtb) hxc v rpge e []

c fdw knbe esop tj ec ikrb (gtb) hxc v rg
ikrb

sijp a ¢ fdw knbe esop tj ec (gfou) gtb h
sijp a ¢ fdw knbe esop tj ec (gfou) gtb h
fndr

a wgtt gms oejy sijp a c¢ fdw knbe esop t]

Observacié
Avaluaci6 sobre 10 punts:
e Solucié lenta: 5 punts.

e soluci6 rapida: 10 punts.

ho

mgai

za

ei ul knwi ssdi a wgtt gms oejy
9§mdd ei ul knwi ssdi a wgtt qms
gxz ey bf m ojx gmbn ei ul knwi
X£.Y5 [Pz ey bf m ojx gmbn ei
Xg v [rpage]

a wgtt gms oejy sijp a ¢ fdw knbe esop tj ec (ho) gtb I

sijp a ¢ fdw knbe esop
oejy sijp a c¢ fdw knbe
ssdi a wgtt gms oejy s:
ul knwi ssdi a wgtt gm:

n tw iuyj gz gxz ey bf m ojx gmbn ei ul knwi ssdi a wgt

£ Dy 9882 PEez ndy SRR 1o P Tomby €4¥ul Bnd IV £ S&Pwg

Entenem com a solucié rapida una que és correcta, on cada operaci6 té cost constant o pro-
porcional al nombre de desplacaments necessaris a aplicar sobre els operadors (en els casos
++i--),icapag de superar els jocs de proves publics i privats. Entenem com a solucié lenta
una que no és rapida, pero és correcta i capag de superar els jocs de proves publics.

Informacié del problema

Autoria: PRO2
Generacio: 2026-01-27T18:53:29.9057

© Jutge.org, 2006—-2026.
https://jutge.org


https://jutge.org

