
Jutge.org
The Virtual Learning Environment for Computer Programming

Examen práctica - Turno 2 - Problema 2 - Actualización de tablas de
frecuencias (2) X57485_es

1. El peso de este ejercicio en la nota del exámen de la práctica es de un 66.66% (2/3 de la
nota).

2. Nota manual: 50%, nota automática: 50%

3. El peso de todos los juegos de pruebas en el cálculo de la nota automática es idéntico
(público: 2.5/10, privados: 2.5/10 cada uno).

Dadas dos tablas de frecuencias 𝑓 1 = 𝐹1 y 𝑓 2 = 𝐹2, queremos una función que actualiza la
primera con los datos de la segunda. Las tablas estarán representadas pormap<string,int>.
Todas las frecuencias en 𝑓 1 y 𝑓 2 son estrictamente positivas.
Como resultado de la actualización la tabla 𝑓 1 contendrá:

• Si ⟨𝑠, 𝑓 ⟩ es un par de la tabla 𝐹1 y 𝑓 2 no contiene ningún par con clave igual a 𝑠, entonces
⟨𝑠, 𝑓 ⟩ está en la tabla 𝑓 1 final.

• Si ⟨𝑠, 𝑓 ⟩ es un par de la tabla 𝑓 2 y 𝐹1 no contiene ningún par con clave igual a 𝑠, entonces
⟨𝑠, 𝑓 ⟩ está en la tabla 𝑓 1 final.

• Si ⟨𝑠, 𝑓 ⟩ es un par de la tabla 𝐹1 y ⟨𝑠, 𝑓 ′⟩ es un par de la tabla 𝑓 2 entonces ⟨𝑠, 𝑚𝑎𝑥(𝑓 , 𝑓 ′)⟩
está en la tabla 𝑓 1 final.

Por ejemplo si las tablas 𝑓 1 y 𝑓 2 son las mostradas aquí:

a 11
b 3
d 7

b 6
c 17
d 2
e 2

entonces después de la actualización 𝑓 1 será

a 11
b 6
c 17
d 7
e 2

Implementa la siguiente función

// Pre: y Post: ver la descripción del enunciado
void actualiza_tabla_frec(map<string,int>& f1, const map<string,int>& f2);

Escribe un pequeño programa que lea una tabla de frecuencias 𝑓 1, y a continuación, entra en
un bucle en el que en cada iteración se lee una tabla de frecuencias 𝑓 2, se actualiza 𝑓 1 con 𝑓 2
y se imprime la tabla 𝑓 1.
N.B. De cara a obtener una solución lo más eficiente posible, tened en cuenta lo siguiente:



1. Recorrer un map mediante iteradores de principio a fin toma tiempo proporcional al
tamaño del map—suponiendo que en cada iteración del recoorido se invierte tiempo
constante.

2. La clase map tiene unmétodoinsert(iterator,par-clave-valor)para dar una
“pista” sobre dónde debe insertarse el nuevo elemento. Si insertamos 𝑁 elementos en
orden creciente de clave usando m.insert(m.end(), x) el coste será proporcional
a 𝑁; si se utilizase el método normal m.insert(x) el coste será mucho mayor, pro-
porcional a 𝑁 log2 𝑁.

Entrada
Cada tabla de frecuencias se representará en la entradamediante una secuencia que comienza
con un entero 𝑘 ≥ 0 seguida de una secuencia de 𝑘 pares ⟨𝑠, 𝑓 ⟩ describiendo los pares que
constituyen la tabla.
La entrada comienza con la subsecuencia que representa a la tabla 𝑓 1. A continuación viene
una serie de tablas de frecuencia (cada una representada por una secuencia con el formato
que hemos descrito arriba). La última tabla de frecuencias de la serie es un tabla vacía (𝑘 =
0).

Salida
Para cada tabla de frecuencias 𝑓 2 de la serie, excepto la última tabla vacía que marca el final
de la serie, se actualiza la tabla 𝑓 1 con los datos de 𝑓 2 y se imprime la tabla 𝑓 1 actualizada. Una
tabla de frecuencias se imprime siguiendo el mismo convenio que para la entrada: primero
un entero 𝑘 con su tamaño y a continuación una secuencia de los 𝑘 pares ⟨𝑠, 𝑓 ⟩ que contiene
la tabla (separamos las componentes 𝑠 y 𝑓 de cada par mediante un espacio en blanco), pero
adicionalmente los pares han de estar en orden creciente de clave (ordenados por la 𝑠). De-
spués de imprimir la tabla 𝑓 1 tras cada actualización se imprime un salto de línea.

Observación
Utilizad la plantilla (plantilla-solucion.cc_txt) que os damos con los ficheros públi-
cos (icono del gatito) para preparar la solución.

Ejemplo de entrada 1
5 a 1 b 1 c 1 d 1 e 1
3 a 1 c 1 f 1
2 b 2 d 2
5 g 1 h 1 a 1 e 1 j 5
0

Ejemplo de salida 1
6 a 1 b 1 c 1 d 1 e 1 f 1
6 a 1 b 2 c 1 d 2 e 1 f 1
9 a 1 b 2 c 1 d 2 e 1 f 1 g 1 h 1 j 5



Información del problema
Autoría: Profesores de PRO2

Generación: 2026-01-25T17:03:26.859Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

