
Jutge.org
The Virtual Learning Environment for Computer Programming

++ i – amb rebot a la classe List X51866_ca

Típicament, l’operador ++ dels iteradors de la classe List els desplaça una unitat cap al end de
la llista, i l’operador -- dels iteradors de la classe List els desplaça una unitat cap al begin de
la llista. A més a més, executar ++ sobre un iterador que es troba al end de la llista produeix
error d’execució, i executar -- sobre un iterador que es troba al begin de la llista també
produeix error d’execució.
En aquest exercici modificarem la classe List de manera que els errors d’execució abans es-
mentats ja no es produiran. En canvi, es produirà un intercanvi en la direcció de moviment
dels operadors ++ i -- (efecte rebot). Per exemple, si creem un iterador nou, el col.loquem al
end de la llista, i executem ++ sobre ell, no hi haurà error d’execució, l’iterador no es mourà,
i a partir d’aquell moment l’operador ++ sobre ell l’anirà desplaçant cap al begin de la llista,
i l’operador -- el desplaçarà cap al end de la llista.
Fixeu-vos en el següent exemple de programa i el seu comportament descrit en els seus co-
mentaris.

List<string> l; // l:
l.push_back("a"); // l: a
l.push_back("b"); // l: a,b
l.push_back("c"); // l: a,b,c
List<string>::iterator it = l.begin(); // l: (a),b,c
it++; // l: a,(b),c
it++; // l: a,b,(c)
it--; // l: a,(b),c
it++; // l: a,b,(c)
it++; // l: a,b,c,()
it++; // l: a,b,c,()
it++; // l: a,b,(c)
it++; // l: a,(b),c
it--; // l: a,b,(c)
it++; // l: a,(b),c
it++; // l: (a),b,c
it++; // l: (a),b,c
it++; // l: a,(b),c
it--; // l: (a),b,c
it--; // l: (a),b,c
it--; // l: a,(b),c
it--; // l: a,b,(c)
it++; // l: a,(b),c
it--; // l: a,b,(c)
it--; // l: a,b,c,()
it--; // l: a,b,c,()
it++; // l: a,b,c,()
it--; // l: a,b,(c)

D’entre els fitxers que s’adjunten en aquest exercici, trobareu list.hh, a on hi ha una im-
plementació de la classe genèrica List. Caldrà que modifiqueu la classe List per a poder



recordar quina és la direcció actual de desplaçament d’un iterador donat, i reimplementeu
els operadors ++ i -- convenientment. Més específicament, haureu de buscar les següents
línies i fer els afegits i modificacions que s’hi indiquen:

...

// Iterators mutables
class iterator {

friend class List;
private:

List *plist;
Item *pitem;
// Add an attribute to remember the orientation of the iterator:
// ...

// You can add new private methods if you wish.

public:

iterator() {
// Initialise the orientation of the iterator
// ...

}

// Adapt this function so that no error occurs and the orientation of the iterator
// is taken into account and updated accordingly.
// Preincrement
iterator operator++()
/* Pre: el p.i apunta a un element E de la llista,

que no és el end() */
/* Post: el p.i apunta a l'element següent a E

el resultat és el p.i. */
{

if (pitem == &(plist->itemsup)) {
cerr << "Error: ++ on iterator at the end of list" << endl;
exit(1);

}
pitem = pitem->next;
return *this;

}

...

// Adapt this function so that no error occurs and the orientation of the iterator
// is taken into account and updated accordingly.
// Predecrement
iterator operator--()
/* Pre: el p.i apunta a un element E de la llista que

no és el begin() */
/* Post: el p.i apunta a l'element anterior a E,



el resultat és el p.i. */
{

if (pitem == plist->iteminf.next) {
cerr << "Error: -- on iterator at the beginning of list" << endl;
exit(1);

}
pitem = pitem->prev;
return *this;

}

...

D’entre els fitxers que s’adjunten a l’exercici també hi ha main.cc (programa principal), i
el podeu compilar directament, doncs inclou list.hh. Només cal que pugeu list.hh al
jutge.

Entrada
L’entrada del programa té una seqüència d’instruccions del següent tipus que s’aniran apli-
cant sobre la llista i dos iteradors que se suposen situats inicialment al principi (i final) de la
llista:

push_front s (s és string)
push_back s (s és string)
pop_front
pop_back
it1 = begin
it1 = end
it1 = erase it1
it1++
it1--
++it1
--it1
*it1 = s (s és string)
insert it1 s (s és string)
cout << *it1
it2 = begin
it2 = end
it2 = erase it2
it2++
it2--
++it2
--it2
*it2 = x (x és string)
insert it2 x (x és string)
cout << *it2
cout << l

Se suposa que la seqüència d’entrada serà correcta, és a dir, que no es produeixen errors
d’execució si s’apliquen correctament sobre una llista i dos iteradors amb les condicions
abans esmentades.



El programa principal que us oferim ja s’encarrega de llegir aquestes entrades i fer les crides
als corresponentsmètodes de la classe list. Només cal que implementeu elmètode sum abans
esmentat.

Sortida
Per a cada instrucció cout << *it1 o cout << *it2 s’escriurà el contingut apuntat per
l’iterador it1 o it2, respectivament. Per a cada instrucció cout << l s’escriurà el con-
tingut de tota la llista. El programa que us oferim ja fa això. Només cal que feu els canvis
abans esmentats.

Exemple d’entrada 1
cout << l
it1--
--it1
it1++
++it1
it2--
--it2
it2++
cout << l
push_back a
push_back b
push_back c
cout << l
it1 = begin
cout << l
it1--
cout << l
--it1
cout << l
it1--
cout << l
++it1
cout << l
--it1
cout << l
it1--
cout << l
it1++
cout << l
it1--
cout << l
it1--
cout << l
it1--
cout << l
it1++
cout << l
it1++
cout << l
it1++
cout << l
it1--
cout << l
it1 = begin
it2 = end
cout << l

it2++
cout << l
it2++
cout << l
cout << *it1
cout << *it2
push_front i
push_back j
push_front k
push_back l
cout << l
it1 = end
it1++
it1--
--it1
it1--
it2++
++it2
it2--
--it2
--it2
cout << l
it1 = begin
it2 = end
it2++
++it2
cout << l
cout << *it1
cout << *it2
it2++
++it2
it1--
it1--
cout << l
cout << *it1
cout << *it2
insert it1 o
insert it2 p
cout << l
pop_front
pop_back
cout << l
it1--
--it1
it2++
cout << l
it1 = erase it1
cout << l



++it2
cout << l
it2 = erase it2
cout << l
*it1 = x
cout << l
*it2 = y
cout << l
it1++
++it2
cout << l
it1--
it2--
cout << l

Exemple de sortida 1
([])
([])
a b c ([])
(a) b c []
(a) b c []
a (b) c []
a b (c) []
a (b) c []
a b (c) []
a b c ([])
a b (c) []
a b c ([])
a b c ([])
a b (c) []
a b c ([])
a b c ([])
a b (c) []
a b c ([])
(a) b c []
(a) b c []
(a) b [c]
a
c
k i (a) b [c] j l
k i a b c ([j]) l
(k) i a b c j [l]
k
l
k (i) a b [c] j l
i
c
k o (i) a b p [c] j l
o (i) a b p [c] j
o i a (b) [p] c j
o i a ([p]) c j
o i [a] (p) c j
o i ([p]) c j
o i ([x]) c j
o i ([y]) c j
o ([i]) y c j
o i ([y]) c j

Exemple d’entrada 2
push_front bi
it2--
it2 = begin
cout << *it2
++it1
it2++
it2--
cout << *it2
push_back yqs
it2++
it2 = end
insert it2 gfn
--it1
it2 = begin
++it2

pop_back
push_front lf
push_back t
it2 = end
push_front dec
push_front tj
it1--
++it1
push_back p
push_front am
push_front rpqe
it2++
push_front ssg
--it2
push_back e
push_front y
push_back pgjh



insert it1 flh
it2--
push_back lmfd
--it2
insert it1 e
push_front p
insert it1 rq
cout << *it2
--it1
cout << l
cout << *it1
push_front tm
cout << *it2
cout << *it1
pop_front
*it2 = wrl
it1++
it1--
insert it2 gfou
++it1
++it1
it1 = end
insert it2 wp
push_front a
push_front g
it2++
it2++
push_front g
it1--
++it2
++it1
push_back dlx
push_front rrg
it2++
++it1
it2++
push_front a
insert it2 jnec
insert it2 ac
++it2
++it2
push_front d
cout << l
it1--
push_front zq
insert it1 xy
--it2
--it2
cout << l
it1--
++it1
it2--
push_front gln
insert it1 k
--it1
cout << *it2
it2++
it1++
++it1
--it2
++it1

it1++
cout << *it2
pop_back
it2 = end
cout << *it1
--it1
--it1
push_back pkfc
push_front qivz
push_front yhj
it2--
push_front av
--it1
cout << *it1
++it1
cout << *it2
it1++
it2 = begin
++it2
push_back ywb
pop_back
--it1
it1++
insert it2 nma
it2 = erase it2
++it2
push_back vvv
--it2
cout << *it2
++it1
push_front j
insert it1 cn
push_back rca
*it2 = s
push_back ouv
push_front mgm
insert it1 trm
cout << *it1
it2 = begin
++it1
it2--
*it1 = a
insert it1 ya
it1 = begin
cout << *it2
push_front fw
insert it1 xzm
push_back ibxw
++it2
it2 = erase it2
insert it2 mkru
it1++
push_front vb
++it1
--it1
--it2
it2--
--it1
cout << *it1
it2--
insert it1 e



cout << *it1
it1--
push_front iksl
insert it2 bgsb
cout << *it2
push_front s
cout << *it1
++it1
push_back ios
push_back pkls
*it2 = j
it1++
cout << *it1
insert it1 mzrn
++it2
cout << *it1
push_back lyfe
cout << *it2
cout << *it2
push_front fg
--it1
cout << *it1
it1--
cout << *it1
push_back l
push_front j
push_front ff
it2++
push_front yu
push_back i
cout << *it1
it2++
cout << *it2
cout << *it2
++it1
push_front xc
insert it2 yw
it1--
push_back mrjl
it1++
it1++
it2++
cout << l
it1++
push_front e
push_front ynuk
--it2
*it1 = ir
++it2
*it2 = zv
cout << *it2
it2--
--it2
++it2
push_back d
insert it2 ot
push_back tas
insert it1 mk
push_back yn
it2 = end
push_back vwp

push_front vdwx
it2--
it1++
insert it2 czie
cout << *it1
cout << *it2
insert it2 zqf
++it2
++it2
cout << *it1
push_back tl
cout << *it1
cout << *it1
push_front en
insert it1 li
push_back ual
cout << *it1
*it1 = v
cout << l
cout << l
push_front wz
it2--
++it1
it2++
++it2
push_front p
push_back ki
--it2
++it2
*it2 = hvy
cout << l
it2 = erase it2
it1++
cout << *it1
it1--
cout << *it1
it2--
++it1
*it1 = lnel
insert it1 mm
--it1
it2--
--it2
--it2
push_front cf
push_back ilaw
++it2
push_back esz
push_front wv
--it2
cout << *it2
--it1
insert it2 zi
++it1
--it1
cout << *it1
cout << *it1
insert it1 i
it2++
cout << l
cout << l



cout << *it1
pop_back
--it2
push_back sq
push_back r
cout << l
insert it2 i
insert it1 bzt
it2++
*it1 = zoay
push_back cc
it2 = erase it2
++it2
it2++
cout << *it1
it1++
it1--
cout << *it1
it2--
push_back rj
++it1
cout << *it1
push_back wku
push_back ura
--it2
push_front secy
insert it2 t
it2++
--it2
it2++
--it1
insert it2 ovn
it1 = begin
--it2
cout << *it1
--it2
push_front yfpn
it1++
insert it2 uc
insert it1 b
pop_front
--it2
insert it2 yx
--it1
it1 = begin
cout << *it2
push_back sasc
push_back q
cout << *it2
it2++
++it1
*it2 = g
push_front hdvm
pop_back
it2 = begin
it2--
*it2 = mr
*it2 = i
it2++
--it2
it1++

insert it1 tky
push_back j
it2 = erase it2
push_front r
it2--
push_front uio
push_front pnxv
++it1
cout << *it2
cout << l
*it1 = h
insert it2 lte
push_front mo
insert it2 g
it1--
--it2
insert it1 jrh
it1--
cout << *it1
cout << *it2
it2--
--it1
push_front keb
it1--
cout << *it1
push_front zp
cout << *it2
cout << l



Exemple de sortida 2
bi
bi
pgjh
p y ssg rpqe am tj dec lf bi yqs t p e [pgjh] flh lmfd e (rq)
rq
pgjh
rq
d a rrg g g a p y ssg rpqe am tj dec lf bi yqs t p e gfou wp wrl flh lmfd e rq jnec ac dlx ([])
zq d a rrg g g a p y ssg rpqe am tj dec lf bi yqs t p e gfou wp wrl flh lmfd e rq jnec ac dlx [xy] ()
dlx
dlx
xy
pkfc
pkfc
qivz
vvv
mgm
mgm
mgm
nma
e
j
j
bgsb
bgsb
mzrn
mgm
mgm
j
j
xc yu ff j fg s iksl vb fw mkru e mgm mzrn ([yw]) j av bgsb j s gln zq d a rrg g g a p y ssg rpqe am tj dec lf bi yqs t p e gfou wp wrl flh lmfd e rq jnec ac dlx xy pkfc cn ya a vvv rca ouv ibxw ios pkls lyfe l i mrjl

zv
av
vwp
av
av
av
av
en vdwx ynuk e xc yu ff j fg s iksl vb fw mkru e mgm mzrn zv ot mk ir li (v) bgsb j s gln zq d a rrg g g a p y ssg rpqe am tj dec lf bi yqs t p e gfou wp wrl flh lmfd e rq jnec ac dlx xy pkfc cn ya a vvv rca ouv ibxw ios pkls lyfe l i mrjl d tas yn czie zqf vwp tl ual []
en vdwx ynuk e xc yu ff j fg s iksl vb fw mkru e mgm mzrn zv ot mk ir li (v) bgsb j s gln zq d a rrg g g a p y ssg rpqe am tj dec lf bi yqs t p e gfou wp wrl flh lmfd e rq jnec ac dlx xy pkfc cn ya a vvv rca ouv ibxw ios pkls lyfe l i mrjl d tas yn czie zqf vwp tl ual []
p wz en vdwx ynuk e xc yu ff j fg s iksl vb fw mkru e mgm mzrn zv ot mk ir li v (bgsb) j s gln zq d a rrg g g a p y ssg rpqe am tj dec lf bi yqs t p e gfou wp wrl flh lmfd e rq jnec ac dlx xy pkfc cn ya a vvv rca ouv ibxw ios pkls lyfe l i mrjl d tas yn czie zqf vwp tl [hvy] ki
j
bgsb
tl
bgsb
bgsb
wv cf p wz en vdwx ynuk e xc yu ff j fg s iksl vb fw mkru e mgm mzrn zv ot mk ir li v i (bgsb) mm lnel s gln zq d a rrg g g a p y ssg rpqe am tj dec lf bi yqs t p e gfou wp wrl flh lmfd e rq jnec ac dlx xy pkfc cn ya a vvv rca ouv ibxw ios pkls lyfe l i mrjl d tas yn czie zqf vwp zi tl [ki] ilaw esz
wv cf p wz en vdwx ynuk e xc yu ff j fg s iksl vb fw mkru e mgm mzrn zv ot mk ir li v i (bgsb) mm lnel s gln zq d a rrg g g a p y ssg rpqe am tj dec lf bi yqs t p e gfou wp wrl flh lmfd e rq jnec ac dlx xy pkfc cn ya a vvv rca ouv ibxw ios pkls lyfe l i mrjl d tas yn czie zqf vwp zi tl [ki] ilaw esz
bgsb
wv cf p wz en vdwx ynuk e xc yu ff j fg s iksl vb fw mkru e mgm mzrn zv ot mk ir li v i (bgsb) mm lnel s gln zq d a rrg g g a p y ssg rpqe am tj dec lf bi yqs t p e gfou wp wrl flh lmfd e rq jnec ac dlx xy pkfc cn ya a vvv rca ouv ibxw ios pkls lyfe l i mrjl d tas yn czie zqf vwp zi [tl] ki ilaw sq r
zoay
zoay
mm
secy
uc
uc
b
pnxv uio r secy [b] tky wv (cf) p wz en vdwx ynuk e xc yu ff j fg s iksl vb fw mkru e mgm mzrn zv ot mk ir li v i bzt zoay mm lnel s gln zq d a rrg g g a p y ssg rpqe am tj dec lf bi yqs t p e gfou wp wrl flh lmfd e rq jnec ac dlx xy pkfc cn ya a vvv rca ouv ibxw ios pkls lyfe l i mrjl d tas yn czie zqf vwp zi i tl t yx uc g ovn sq r cc rj wku ura sasc j
jrh
tky
b
jrh
zp keb mo pnxv uio r secy lte g (b) tky [jrh] wv h p wz en vdwx ynuk e xc yu ff j fg s iksl vb fw mkru e mgm mzrn zv ot mk ir li v i bzt zoay mm lnel s gln zq d a rrg g g a p y ssg rpqe am tj dec lf bi yqs t p e gfou wp wrl flh lmfd e rq jnec ac dlx xy pkfc cn ya a vvv rca ouv ibxw ios pkls lyfe l i mrjl d tas yn czie zqf vwp zi i tl t yx uc g ovn sq r cc rj wku ura sasc j

Observació
Avaluació sobre 10 punts: (Afegiu comentaris si el vostre codi no és prou clar)

• Solució lenta: 5 punts.

• solució ràpida: 10 punts.

Entenem com a solució lenta una que és correcta i capaç de superar els jocs de proves públics.
Entenemcoma solució ràpida una que és correcta i capaç de superar els jocs de proves públics
i privats.

Informació del problema
Autoria: PRO2

Generació: 2026-01-27T18:53:06.689Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

