
2017

24 We live in a spherical world
10 points

Introduction
Although lack of education, impossibility of access to intellectual works and some Christian expression of
ideas affirming the Earth was flat… make it difficult to tell what wider population in early Middle Ages thought
(if they even thought about this ;-), the fact is that the Earth is spherical. This idea first appeared in Greek
philosophy with Pythagoras in the 6th century BC, and Aristotle provided the first observations supporting this
idea, like the round Earth shadow over the Moon during lunar eclipses.

(*) Image not original from Aristotle

Flat trigonometry is not accurate when calculating distances between two points in the surface of the Earth,
very important in navigation.
Luckily, the havesine formula allows us to calculate the shortest orthodromic distance or shorter distance
between two points in the surface of a sphere.

This can be very helpful, for example, if you are trying to win the Barcelona World Race, a non-stop, round-
the-world yacht race, and look for the shortest route…
Looking at this map, it would seem that the horizontal distance on the Equator is similar to the one down on
the 45ties latitude (in red, clipper route):

but a more realistic view, can help you see that maybe ‘souther is shorter’:

2017

As an example, the circle of latitude 0°, that’s the Equator, measures 40030Km (21600nm); while the Antarctic
Circle, at latitude 66°33′ S, measures just 17662Km (9536nm)

Haversine formula

Latitude and longitude are basically nothing more than angles. Latitude is measured as your degrees
north or south of the equator. Longitude is your degrees east or west of the prime meridian. The
combination of these two angles pinpoints an exact location on the surface of the earth.

As shown in the image 2 above, the quickest route between two points on the surface of the earth is a
"great circle path" - in other words, a path that comprises a part of the longest circle you could draw
around the globe that intersects the two points.

The shortest distance between two points on the globe can be calculated using the Haversine formula
shown below.

Where:
- d is the orthodromic distance between two points

- r is the radius of the sphere

- φ1, φ2: latitude of point 1 and latitude of point 2, in radians

- λ1, λ2: longitude of point 1 and longitude of point 2, in radians

2- A perspective view of the Earth
showing latitude (φ) and longitude (λ)

1- A diagram illustrating great-circle
distance (drawn in red) between two

points on a sphere, P and Q

https://en.wikipedia.org/wiki/Great_circle

2017

Program specification

Your program should read two coordinates in latitude, longitude (float number in degrees), and calculate the
orthodromic distance between them in meters, without decimals (truncated output).
We’ll assume that Earth is perfectly spherical, with radius r=6371Km

Latitude will be positive for north hemisphere and negative for south.
Longitude will be positive for East and negative for West
(*) So, no indication for N/S or E/W is needed, and the calculation is direct from the values.

Input
latitude1,longitude1
latitude2,longitude2

Example
41.471485,2.094249
41.43166,2.126039

Output
distance

Example
5160

2017

Solution

from math import radians, cos, sin, asin, sqrt

def haversine(point1, point2):
 """ Calculate the great-circle distance bewteen two points on the Earth surface.

 :input: two 2-tuples, containing the latitude and longitude of each point
 in decimal degrees.

 Example: haversine((45.7597, 4.8422), (48.8567, 2.3508))

 :output: Returns the distance bewteen the two points in kilometers
 """
 AVG_EARTH_RADIUS = 6371000 # in m

 # unpack latitude/longitude
 lat1, lng1 = point1
 lat2, lng2 = point2

 # convert all latitudes/longitudes from decimal degrees to radians
 lat1, lng1, lat2, lng2 = map(radians, (lat1, lng1, lat2, lng2))

 # calculate haversine
 lat = lat2 - lat1
 lng = lng2 - lng1
 d = sin(lat * 0.5) ** 2 + cos(lat1) * cos(lat2) * sin(lng * 0.5) ** 2
 h = 2 * AVG_EARTH_RADIUS * asin(sqrt(d))
 return h # in kilometers

Read the input coordinates
lat,lon
coor1=[float(x) for x in input().split(',')]
coor2=[float(x) for x in input().split(',')]

print(int(haversine(coor1,coor2)))

