
Jutge.org
The Virtual Learning Environment for Computer Programming

Control PRO2 - Turno 1 (Otoño 2017) X45880_es

El sistema jutge.org (de ahora en adelante Jutge) es un entorno de aprendizaje virtual en
el que los estudiantes pueden encontrar distintas colecciones de problemas. Dado un prob-
lema, un estudiante puede realizar varios envíos con posibles soluciones. Un envío se car-
acteriza por un conjunto de atributos, tales como la identidad del estudiante que realizó el
envío, la fecha y hora en la que se entregó la solución, y el veredicto del Jutge con respecto a
los juegos de prueba del problema, que se utilizan para comprobar la corrección de la solu-
ción enviada.
Algunos exámenes de asignaturas de programación se realizan y evalúan parcialmente uti-
lizando el Jutge. La calificación automática de los envíos de un estudiante se calcula seleccio-
nando en primer lugar el mejor de sus envíos , y multiplicando a continuación el número de
juegos de prueba superados por dicho envío por una constante dada (e.g. 2.5 si el problema
contiene cuatro juegos de prueba). El mejor envío de un estudiante es el envío de dicho
estudiante que supera el máximo número de juegos de prueba. Si el estudiante ha hecho
varios envíos que superan el máximo número de juegos de prueba, el mejor envío de dicho
estudiante es el último envío que supera el máximo número de juegos de prueba.
En este ejercicio, vamos a construir un programa que lea una secuencia de envíos de solu-
ciones para un problema del Jutge; los almacene en un vector 𝑣 de envíos; los ordene cre-
cientemente por el DNI del estudiante que realizó el envío, y crecientemente por tiempo de
entrega en el caso en que dos envíos hayan sido realizados por el mismo estudiante; y los
escriba ordenados de este modo en la pantalla.
La secuencia de envíos viene precedida por el número de estudiantes que pueden realizar
envíos, i.e. el número de estudiantes matriculados en el curso del Jutge al que pertenece
el problema, y termina con un envío de un estudiante inexistente con DNI igual a 0 (ver el
fichero correspondiente a la entrada del ejemplo de este enunciado).
A continuación, el programa recibirá una secuencia de instrucciones, ejecutará las opera-
ciones correspondientes a cada instrucción, y terminará cuando reciba la instrucción “fi”.
La instrucción “consultar” requiere leer un entero 𝑥 correspondiente al DNI del estudiante
cuyos envíos se desea consultar. Si no hay ningún envío de dicho estudiante en el vector 𝑣, el
programa lo indicará mediante un mensaje; en otro caso, escribirá los envíos del estudiante
conDNI igual a 𝑥 que contiene el vector 𝑣 en orden creciente por tiempo de entrega del envío.
La instrucción “classificar” escribirá el subconjunto de 𝑣 formado por el mejor envío de cada
estudiante ordenado de manera que estén juntos todos los envíos que superan el mismo
número de juegos de prueba.
La primera vez que se introduzca la instrucción “classificar” será necesario construir una
matriz de clasificación 𝑚 con los mejores envíos del vector 𝑣, para poder escribir el contenido
de dicha matriz de clasificación en la pantalla. Se supone que en todo momento el vector 𝑣
está ordenado crecientemente por el DNI del estudiante que realiza el envío, y que los envíos
de un mismo estudiante en el vector 𝑣 están ordenados a su vez crecientemente por tiempo
de entrega en el Jutge.
La matriz de clasificación 𝑚 contiene un solo envío por estudiante, que es, además, el mejor
de los envíos que contiene el vector 𝑣 de dicho estudiante. Dados dos envíos 𝑒1 y 𝑒2 de un
mismo estudiante, 𝑒1 es mejor que 𝑒2 si 𝑒1 supera más juegos de pruebas que 𝑒2, o si 𝑒1 y 𝑒2
superan el mismo número de juegos de pruebas pero 𝑒1 es más reciente que 𝑒2 (i.e. el tiempo
de entrega de 𝑒1 es mayor que el de 𝑒2).



Los envíos de la matriz de clasificación 𝑚 están clasificados, a su vez, por el número de
juegos de prueba que superan, de manera que cada fila 𝑘 de la matriz de clasificación 𝑚 debe
contener únicamente envíos que superen exactamente 𝑘 juegos de prueba. Dentro de cada
fila de la matriz 𝑚, los envíos están ordenados crecientemente por el DNI del estudiante que
realizó el envío.
En el fichero de salida del ejemplo de este enunciado podéis observar la matriz de clasifi-
cación correspondiente a las 29 entregas recibidos. Los envíos que aparecen a continuación
de la frase “0 jocs de proves superats” son los envíos de la fila 0 de la matriz de clasificación
𝑚. Los envíos que aparecen a continuación de la frase “1 jocs de proves superats” son los
envíos de la fila 1 de la matriz de clasificación, y así sucesivamente.
Para implementar este programa hemos construido la clase Lliurament (que permite repre-
sentar un envío –o entrega– de un estudiante) y un módulo funcional Eines_Vec_Lliu (que
permite realizar distintas operaciones con vectores de objetos de la clase Lliurament).
Podéis consultar la especificación y la representación del tipo de la clase Lliurament en el
archivoLliurament.hh, y la especificacióndelmódulo funcionalEines_Vec_Lliu en el archivo
Eines_Vec_Lliu.hh.
Teniendo todo esto en cuenta, debéis implementar eficientemente elmétodo estático ypúblico
millor de la clase Lliurament, que determina si el envío representado por 𝑒1 es mejor que el
envío representado por 𝑒2.

static bool millor(const Lliurament& e1, const Lliurament& e2);
/* Pre: e1 i e2 han estat lliurats pel mateix estudiant. */
/* Post: Retorna true a algun dels casos següents: 1) e1 ha superat més

jocs de proves que e2; 2) e1 i e2 han superat el mateix nombre de jocs
de proves, i el temps de lliurament de e1 és més gran que el temps de
lliurament de e2. En altres casos, retorna false. */

y la acción classifica del módulo funcional Eines_Vec_Lliu, que construye la matriz de
clasificación𝑚descrita anteriormente a partir de unvector 𝑣de objetos de la claseLliurament,
que en el rango 𝑣[0, … , 𝑛_𝑙𝑙𝑖𝑢 − 1] está ordenado crecientemente por el DNI del estudiante
que realizó el envío, y crecientemente por tiempo de entrega en el caso en que dos envíos
sean del mismo estudiante.

void classifica(int n_lliu, const vector<Lliurament>& v,
vector<vector<Lliurament> >& m);

/* Pre: 0 <= n_lliu <= v.size(), v[0 ... n_lliu -1] està ordenat en ordre
creixent per número de DNI i, en cas d'empat, per temps de lliurament.
m=M, M.size() = 1 + Lliurament::nombre_jps() i M[j].size()=0 per a tot j */
/* Post: Per cada x tal que v[0, ..., n_lliu - 1] conté com a mínim un
lliurament amb DNI = x, m conté el millor lliurament amb DNI = x de
v[0, ..., n_lliu - 1]. El millor lliurament d'un estudiant és el que
supera més jocs de proves i, en cas d'empat, el que té el temps de
lliurament més gran. La matriu m no conté més d'un lliurament amb el
mateix DNI. A més, els lliuraments de m estan organitzats de la manera
següent: 1) cada fila k només conté lliuraments que superen exactament
k jocs de proves; 2) dins d'una fila concreta, els lliuraments estan
ordenats en ordre creixent per número de DNI. */

Debéis entregar un archivosolucio.cc conuna implementación eficiente delmétodomillor
de la clase Lliurament y de la acción classifica del módulo funcional Eines_Vec_Lliu. En-
contraréis la plantilla del archivo solucio.cc dentro del material adicional que os pro-
porcionamos en el apartado Public files del problema del Jutge. Esta plantilla se encuentra
en el archivo plantilla.txt: debéis renombrarlo de manera que se llame solucio.cc,
completarlo y enviarlo al Jutge.



Vuestro archivo solucio.cc no puede contener la implementación de otras operaciones de
la clase Lliurament ni del módulo funcional Eines_Vec_Lliu.

Observación
En el apartado Public files del Jutge os proporcionamos material adicional en un fichero .tar.
Podéis extraer el contenido de este fichero con la instrucción

tar -xvf nom_fitxer.tar

Este material adicional contiene los siguientes archivos:

• plantilla.txt: es la plantilla del archivo solucio.cc; debéis renombrar este archivo
de manera que se llame solucio.cc, completarlo y enviarlo al Jutge

• Lliurament.hh: la especificación y la representacióndel tipode la claseLliurament

• Lliurament.cc: la implementación de los métodos de la clase Lliurament, ex-
cepto la del método estático y público millor, que debéis completar en el archivo
solucio.cc

• Eines_Vec_Lliu.hh: la especificación Pre/Post de todas las operaciones delmódulo
funcional Eines_Vec_Lliu

• Eines_Vec_Lliu.cc: la implementación de todas las operaciones del módulo fun-
cional Eines_Vec_Lliu, excepto la de la acción classifica, que debéis completar
en el archivo solucio.cc

• pro2.cc: un programa principal que podéis utilizar para probar losmétodos públicos
de la clase Lliurament y las operaciones del módulo funcional Eines_Vec_Lliu

• llegeixme.txt: instrucciones para generar el ejecutable del programa pro2 y pro-
barlo

Valoraremos positivamente que la solución no contenga instrucciones innecesarias (espe-
cialmente bucles o llamadas a operaciones costosas), ni objetos (especialmente vectores o
matrices) innecesarios, que no haga recorridos cuando debería hacer búsquedas, y que use
correctamente las operaciones más adecuadas de la clase Lliurament y del módulo fun-
cional Eines_Vec_Lliu siempre que sea posible. No se puede usar ninguna estructura de
datos que no haya aparecido en las sesiones 1 a 4 de laboratorio. Se permite un uso justificado
de la operación push_back de la clase vector.

Cuando hagáis envíos, el Jutge os indicará cuantos juegos de pruebas supera vuestro pro-
grama y de qué tipo (público o privado). El juego de pruebas denominado público corre-
sponde a los ficheros entrada.txt y sortida_correcta.txt del apartado Public files.

Información del problema
Autoría: Professors de PRO2
Traducción: Professors de PRO2

Generación: 2026-01-25T16:21:21.812Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

