Jutge.org

The Virtual Learning Environment for Computer Programming

Avaluar expressions amb divisi6 X43096_ca

INTRODUCCIO:

En aquest exercici considerarem arbres que representen expressions sobre els operadors
+, -, *, /,1sobre operands naturals. Per exemple, I’arbre - (+ (3, / (4, 2)), 5) representa
I'expressié 3+4/2-5.

Alhora d’avaluar una divisi6, interpretem la divisi6 entera que ens ofereix C++. Noteu que,
en particular, (=5)/2 = —2, contradient la definici6 que trobem habitualment en llibres de
matematiques.

Noteu també que la divisi6 per 0 no esta definida, i aixd ho haurem de tenir en compte en
resoldre 'exercici.

EXERCICI:
Implementeu una funcié que, donat un arbre binari d’strings que representa una expressio
correcta sobre naturals i operadors +, —, *, /, retorna la seva avaluaci6 i un indicador de si

s’ha produit un error de divisi6 per 0, tot mitjancant parametres per referencia. Aquesta és
la capcelera:

// Pre: t és un arbre no buit que representa una expressid correcta

// sobre els naturals i els operadors +,—,*, /.

// Les operacions no produeixen errors d'overflow,

// perd poden produir error de divisid per 0.

// Post: Si 1l'avaluacid de 1l'expressid representada per t no produeix errors de
// llavors 'result' val 1l'avaluacid d'aquesta expressidé i 'error' val 'fa
// En cas contrari, 'error' val 'true', i el valor de 'result' és irrelle

void evaluate (const BinaryTree<string> &t, int &result, bool &error);
Aqui tenim un exemple de parametre d’entrada de la funci6 i la corresponent sortida:
evaluate (/ (+(1,2),-(5,2)), result, error) produces result=1, error=false

Fixeu-vos que l'enunciat d’aquest exercici ja ofereix uns fitxers que haureu d’utilitzar per a
compilar: Makefile, program.cpp, BinaryTree.hpp, evaluate.hpp, utils.hpp,
utils.cpp. Us falta crear el fitxer evaluate.cpp amb els corresponents includes i
implementar-hila funcié anterior. Valdra la pena que utilitzeu algunes de les funcions oferides
autils.hpp. Quan pugeu la vostra soluci6 al jutge, només cal que pugeu un tar construit
aixi:

tar cf solution.tar evaluate.cpp

Entrada

L'entrada té un nombre arbitrari de casos. Cada cas consisteix en una linia amb un string de-
scribint un arbre binari d’strings. Fixeu-vos en que el programa que us oferim ja s’encarrega
de llegir aquestes entrades. Només cal que implementeu la funcié abans esmentada.



Sortida

Per a cada cas, la sortida conté la corresponent avaluacié de I’arbre o bé una indicaci6 de
que s’ha produit un error de divisié per 0 durant el procés d’avaluar 1’arbre. Fixeu-vos en
que el programa que us oferim ja s’encarrega d’escriure aquesta avaluacié. Només cal que

implementeu la funcié abans esmentada.

Exemple d’entrada 1

Exemple de sortida 1

—(+(-(5,2),*(4,4)),-(1,8)) 26
+(/(+(6,8),-(6,6)),—-(5,4)) Division by 0
5 5
*(*(/(5,8),2),—(*(7,2),*(4,7))) 0

K (= (4+(1,4),-(4,4)),+(+(5,5),+(2,2))) 70
-(+(6,8),-(3,6)) 17
+(6,—(*(5,4),*%(3,6))) 8
*(=(+(5,*(4,1)),+(-(6,5),+(3,4))),8) 8

* (4, —(*(1,*(1,1)),-(7,8))) 8

4 4
= (*(*(=(5,5),5),+(5,+(3,6))),*(3,-(5,1)))| -12
5 5
- (*(8,6),+(7,5)) 36
+(6,5) 11
* (5, 3) 15
*(-(4,3),5) 5
ST, % (= (*(8,4),-(4,5)),-(3,+(7,6)))) 0

2 2

7 7

X (3,4 (+(7,+(4,1)),/(+(3,8),+(2,6)))) 39

Exemple d’entrada 2

Exemple de sortida 2

+(12,52) 64

44 44

+(65,19) 84

5 5
—(=(/(=(7,20),+(71,97)),+(/(75,29),-(87, 44362, 37)
—(=(89,-(*(77,72),38)),/(92,31)) -5419

+(=(77,100), 8) -15
*(/(=(14,89),+(47,7)), - (+(+(93,89),+ (65, 433388 (- (32, 46),-(44,37))))
100 100
+(/(1,56),+(64,72)) 136

44 44
=(/(*(+(97,+(97,39)),-(54,76)),/(/ (75, /(A1 B4I3idd )Py *q 86, 100) )
*(-(49,63),/(77,73)) -14
/(+(36,77),-(57,*(23,60))) 0

*(44,-(83,8)) 3300

-(35,*(96,39)) -3709
—(+(55,87),—-(—(*(60,81),/(53,14)),99)) -4616

—(/ (25, *(+(27,94),64)),44) —-44
—(59,4+(*(57,-(92,33)), = (+(=(27,12), *(83, 2033039~ (18, 72),4))))

* (10, 39) 390

Informacié del problema

Autoria: PRO1

Generacid: 2026-01-25T21:12:05.719Z



© Jutge.org, 2006-2026.
https:/ /jutge.org


https://jutge.org

