
Jutge.org
The Virtual Learning Environment for Computer Programming

Avaluar expressions amb divisió X43096_ca

INTRODUCCIÓ:
En aquest exercici considerarem arbres que representen expressions sobre els operadors
+,-,*,/, i sobre operands naturals. Per exemple, l’arbre -(+(3,/(4,2)),5) representa
l’expressió 3+4/2-5.
Alhora d’avaluar una divisió, interpretem la divisió entera que ens ofereix C++. Noteu que,
en particular, (−5)/2 = −2, contradient la definició que trobem habitualment en llibres de
matemàtiques.
Noteu també que la divisió per 0 no està definida, i això ho haurem de tenir en compte en
resoldre l’exercici.
EXERCICI:
Implementeu una funció que, donat un arbre binari d’strings que representa una expressió
correcta sobre naturals i operadors +,-,*,/, retorna la seva avaluació i un indicador de si
s’ha produït un error de divisió per 0, tot mitjançant paràmetres per referència. Aquesta és
la capcelera:

// Pre: t és un arbre no buit que representa una expressió correcta
// sobre els naturals i els operadors +,-,*,/.
// Les operacions no produeixen errors d'overflow,
// però poden produïr error de divisió per 0.
// Post: Si l'avaluació de l'expressió representada per t no produeix errors de divisió per 0,
// llavors 'result' val l'avaluació d'aquesta expressió i 'error' val 'false'.
// En cas contrari, 'error' val 'true', i el valor de 'result' és irrellevant.
void evaluate(const BinaryTree<string> &t, int &result, bool &error);

Aquí tenim un exemple de paràmetre d’entrada de la funció i la corresponent sortida:

evaluate(/(+(1,2),-(5,2)), result, error) produces result=1, error=false

Fixeu-vos que l’enunciat d’aquest exercici ja ofereix uns fitxers que haureu d’utilitzar per a
compilar: Makefile, program.cpp, BinaryTree.hpp, evaluate.hpp, utils.hpp,
utils.cpp. Us falta crear el fitxer evaluate.cpp amb els corresponents includes i
implementar-hi la funció anterior. Valdrà la pena queutilitzeu algunes de les funcions oferides
a utils.hpp. Quan pugeu la vostra solució al jutge, només cal que pugeu un tar construït
així:

tar cf solution.tar evaluate.cpp

Entrada
L’entrada té un nombre arbitrari de casos. Cada cas consisteix en una línia amb un string de-
scribint un arbre binari d’strings. Fixeu-vos en que el programa que us oferim ja s’encarrega
de llegir aquestes entrades. Només cal que implementeu la funció abans esmentada.



Sortida
Per a cada cas, la sortida conté la corresponent avaluació de l’arbre o bé una indicació de
que s’ha produït un error de divisió per 0 durant el procès d’avaluar l’arbre. Fixeu-vos en
que el programa que us oferim ja s’encarrega d’escriure aquesta avaluació. Només cal que
implementeu la funció abans esmentada.

Exemple d’entrada 1
-(+(-(5,2),*(4,4)),-(1,8))
+(/(+(6,8),-(6,6)),-(5,4))
5
*(*(/(5,8),2),-(*(7,2),*(4,7)))
*(-(+(1,4),-(4,4)),+(+(5,5),+(2,2)))
-(+(6,8),-(3,6))
+(6,-(*(5,4),*(3,6)))
*(-(+(5,*(4,1)),+(-(6,5),+(3,4))),8)
*(4,-(*(1,*(1,1)),-(7,8)))
4
-(*(*(-(5,5),5),+(5,+(3,6))),*(3,-(5,1)))
5
-(*(8,6),+(7,5))
+(6,5)
*(5,3)
*(-(4,3),5)
/(7,*(-(*(8,4),-(4,5)),-(3,+(7,6))))
2
7
*(3,+(+(7,+(4,1)),/(+(3,8),+(2,6))))

Exemple de sortida 1
26
Division by 0
5
0
70
17
8
8
8
4
-12
5
36
11
15
5
0
2
7
39

Exemple d’entrada 2
+(12,52)
44
+(65,19)
5
-(-(/(-(7,20),+(71,97)),+(/(75,29),-(87,64))),37)
-(-(89,-(*(77,72),38)),/(92,31))
+(-(77,100),8)
*(/(-(14,89),+(47,7)),-(+(+(93,89),+(65,43)),*(-(32,46),-(44,37))))
100
+(/(1,56),+(64,72))
44
-(/(*(+(97,+(97,39)),-(54,76)),/(/(75,/(21,84)),41)),*(86,100))
*(-(49,63),/(77,73))
/(+(36,77),-(57,*(23,60)))
*(44,-(83,8))
-(35,*(96,39))
-(+(55,87),-(-(*(60,81),/(53,14)),99))
-(/(25,*(+(27,94),64)),44)
-(59,+(*(57,-(92,33)),-(+(-(27,12),*(83,20)),+(-(18,72),4))))
*(10,39)

Exemple de sortida 2
64
44
84
5
-62
-5419
-15
-388
100
136
44
Division by 0
-14
0
3300
-3709
-4616
-44
-5029
390

Informació del problema
Autoria: PRO1

Generació: 2026-01-25T21:12:05.719Z



© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

