
Powers of permutations

X39049_en

Given an n , a *permutation* of $\{0, 1, \dots, n-1\}$ is a sequence where each of the numbers $0, 1, \dots, n-1$ occurs exactly once. For example, if $n = 3$, the sequences $(1\ 2\ 0)$, $(2\ 0\ 1)$ and $(0\ 1\ 2)$ are permutations of $\{0, 1, 2\}$.

Given two permutations $\sigma = (\sigma_0, \dots, \sigma_{n-1})$ and $\tau = (\tau_0, \dots, \tau_{n-1})$ of $\{0, 1, \dots, n-1\}$, their *product* $\sigma \circ \tau$ is defined as the permutation $\rho = (\rho_0, \dots, \rho_{n-1})$ such that $\rho_i = \sigma_{\tau_i}$. For example, if $n = 3$, $\sigma = (1\ 2\ 0)$ and $\tau = (2\ 0\ 1)$, then $\sigma \circ \tau = (0\ 1\ 2)$, since:

- $\tau_0 = 2$ and $\sigma_2 = 0$,
- $\tau_1 = 0$ and $\sigma_0 = 1$, and
- $\tau_2 = 1$ and $\sigma_1 = 2$.

Make a program that, given a permutation σ and a natural k , computes the *power* of σ raised to k : $\sigma^k = \overbrace{\sigma \circ \dots \circ \sigma}^{k)}$. By convention, $\sigma^0 = (0, 1, \dots, n-1)$.

Input

The input includes several cases. Each case consists in the number n ($1 \leq n \leq 10^4$), followed by n numbers between 1 and n that describe the permutation σ , followed by the number k ($0 \leq k \leq 10^9$).

Output

Write the permutation σ^k .

Observation

The expected solution to this problem has cost $O(n \cdot \log k)$. The solutions that have cost $\Omega(n \cdot k)$ can get at most 3 points over 10.

You can add (few) lines of comments explaining what you intend to do.

If needed, you can use that the product of permutations is associative.

Sample input 1

```
3
1 2 0
0
```

```
3
1 2 0
2
```

```
4
0 2 3 1
1
```

```
10
```

```
4 3 7 8 0 5 2 1 6 9
```

```
5
```

Sample output 1

0 1 2

2 0 1
0 2 3 1
4 7 6 1 0 5 8 2 3 9

Problem information

Author: Enric Rodríguez

Generation: 2026-01-25T15:50:14.628Z

© *Jutge.org*, 2006–2026.

<https://jutge.org>