
Jutge.org
The Virtual Learning Environment for Computer Programming

Adaptar BinaryTreeper amantenir informació sobre l’alçadaX38946_ca

L’objectiu d’aquest exercici és afegir unnoumètodegetHeight a la classeGenèricaBinaryTree
que retorni l’alçada de l’arbre. Definim que un arbre buit té alçada 0 i un arbre amb un sol
node té alçada 1. Una opció seria que aquest mètode calculés aquesta alçada, per exemple
recursivament, i la retornés, però aquest enfoc seria massa lent per a poder superar els jocs
de proves privats. Aquesta operació hauria de tenir cost constant, i per això, convindrà afegir
informació adicional a la classe que permeti mantenir actualitzada informació sobre l’alçada.
A continuació donem una guia de com fer això.
D’entre els fitxers que s’adjunten en aquest exercici, trobareu BinaryTree.old.hpp, a on
hi ha una implementació de la classe genèrica BinaryTree. En primer lloc, haureu de fer:

cp BinaryTree.old.hpp BinaryTree.hpp

A continuació, heu de fer tot un seguit de canvis sobre la classe BinaryTree definida a
BinaryTree.hpp:

• Heu d’afegir un nou atribut int height.

• Heu d’afegir un nou mètode privat per a actualitzar l’alçada de l’arbre i l’alçada dels
seus antecessors (els arbres que tenen a l’arbre actual com a subarbre). Això es pot fer
de forma recursiva o iterativa. Una possible manera iterativa és:

void updateHeight()
{
BinaryTree<T> *pt = this;
while (pt != NULL) {
if (pt->isEmpty()) pt->height = ...;
else pt->height = ...;
pt = pt->parent;

}
}

Una possible manera recursiva és:

void updateHeight()
{
if (isEmpty()) height = ...;
else height = ...;
if (parent != NULL) parent->updateHeight();
}

• A les constructores i a l’operació d’assignació heu d’afegir crides a updateHeight.

• Heu d’implementar el mètode getHeight, simplement retornant el valor del nou
atribut.



D’entre els fitxers que s’adjunten a l’exercici també hi ha program.cpp (programa princi-
pal) iMakefileper a compilar. Per a pujar la vostra solució, heude crear el fitxersolution.tar
així:

tar cf solution.tar BinaryTree.hpp

Entrada
El programa principal té una variable d’arbre d’enters t, inicialment buida, i llegeix instruc-
cions que, o bé mostren com és t, o bé modifiquen algun subarbre de t o mostren l’alçada
d’algun subarbre de t. Les instruccions que mostren t són simplement de la forma << t.
Les altres instruccions comencen per t, seguit d’una seqüència de .left o .right. Final-
ment, o bé la instrucció acaba amb .height, cas en el qual s’escriurà l’alçada del correspo-
nent subarbre, o ve seguida de = t', on t' és un string que representa un arbre, cas en el
qual t' (com a arbre) serà assignat al corresponent subarbre de t. Per exemple:

t = 3(4,5(1,2))
<< t
t.height
t.left.height
t.right.height
t.right.left = 8(9,10)
<< t
t.right.height

La sortida de la seqüència anterior és:

3(4,5(1,2))
3
1
2
3(4,5(8(9,10),2))
3

Com podeu observar, el height d’un arbre que està per sobre del que hem assignat també
ha estat actualitzat.
Se suposa que la seqüència d’entrada serà correcta (sense accessos fora de l’arbre, tot i que
sí que es pot accedir a subarbres buits de l’arbre).
El programa principal que us oferim ja s’encarrega de llegir aquestes entrades i fer les crides
als corresponents mètodes de la classe BinaryTree. Només cal que feu les modificacions
abans esmentades dins el fitxer BinaryTree.hpp.

Sortida
Per a cada instrucció << t, s’escriurà el contingut actual de l’arbre. Per a cada instrucció
acabada en height, s’escriurà l’alçada del subarbre indicat. El programa que us oferim ja fa
això. Només cal que feu lesmodificacions abans esmentades dins el fitxerBinaryTree.hpp.

Exemple d’entrada 1
t = 7(2,5)

t.height
<< t
t = 5(,1)



t.height
<< t
t.left = 4(2(,3),2)
t.left.height
<< t
t.left.left = 7(3,)
t.left.height
<< t
t.right = 5(6(1,),2)
t.height
<< t
t.left.right = 5(,8(,3))
t.height
<< t
t.left.right.left = 1(3,4(3,2))
t.height
<< t
t.right.right = 2(5(2,2),)
t.right.right.height
<< t
t.left.left = 6
t.left.left.height
<< t
t.right.right.left = 1
t.right.height
<< t

Exemple de sortida 1
2
7(2,5)
2
5(,1)
3
5(4(2(,3),2),1)
3
5(4(7(3,),2),1)
4
5(4(7(3,),2),5(6(1,),2))
5
5(4(7(3,),5(,8(,3))),5(6(1,),2))
6
5(4(7(3,),5(1(3,4(3,2)),8(,3))),5(6(1,),2))
3
5(4(7(3,),5(1(3,4(3,2)),8(,3))),5(6(1,),2(5(2,2),)))
1
5(4(6,5(1(3,4(3,2)),8(,3))),5(6(1,),2(5(2,2),)))
3
5(4(6,5(1(3,4(3,2)),8(,3))),5(6(1,),2(1,)))

Informació del problema
Autoria: PRO1

Generació: 2026-01-25T21:10:50.557Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

