Jutge.org

The Virtual Learning Environment for Computer Programming

Adaptar BinaryTree per a mantenir informacié sobre I’alcadaX38946_ca

L'objectiu d’aquest exercici és afegir un nou metode get Height ala classe GenéricaBinaryTree
que retorni 1’algada de 1’arbre. Definim que un arbre buit té alcada 0 i un arbre amb un sol
node té alcada 1. Una opci6 seria que aquest metode calculés aquesta al¢ada, per exemple
recursivament, i la retornés, perd aquest enfoc seria massa lent per a poder superar els jocs

de proves privats. Aquesta operacié hauria de tenir cost constant, i per aixo, convindra afegir
informaci6 adicional a la classe que permeti mantenir actualitzada informacié sobre 1’al¢ada.

A continuacié donem una guia de com fer aixo.

D’entre els fitxers que s’adjunten en aquest exercici, trobareu BinaryTree.old.hpp, a on

hi ha una implementaci6 de la classe genérica BinaryTree. En primer lloc, haureu de fer:

cp BinaryTree.old.hpp BinaryTree.hpp

A continuacid, heu de fer tot un seguit de canvis sobre la classe BinaryTree definida a
BinaryTree.hpp:

e Heu d’afegir un nou atribut int height.

e Heu d’afegir un nou métode privat per a actualitzar 1’alcada de 'arbre i I'’alcada dels
seus antecessors (els arbres que tenen a I’arbre actual com a subarbre). Aixo es pot fer
de forma recursiva o iterativa. Una possible manera iterativa és:

void updateHeight ()
{
BinaryTree<T> *pt = this;
while (pt != NULL) {
if (pt—->isEmpty()) pt—->height = ...;
else pt->height = ...;
pt = pt—>parent;
}

Una possible manera recursiva és:

void updateHeight ()
{

if (isEmpty()) height = ...;
else height = ...;
if (parent != NULL) parent->updateHeight () ;

}

e A les constructores i a 'operacié d’assignacié heu d’afegir crides a updateHeight.

e Heu d’implementar el metode getHeight, simplement retornant el valor del nou
atribut.



D’entre els fitxers que s’adjunten a I'exercici també hi ha program. cpp (programa princi-
pal) iMakefile peracompilar. Per a pujar la vostra soluci6, heu de crear el fitxer solution.tar
aixi:

tar cf solution.tar BinaryTree.hpp

Entrada

El programa principal té una variable d’arbre d’enters t, inicialment buida, i llegeix instruc-
cions que, o bé mostren com és t, o bé modifiquen algun subarbre de t o mostren 'alcada
d’algun subarbre de t. Les instruccions que mostren t sén simplement de la forma << t.
Les altres instruccions comencen per t, seguit d'una seqiiéncia de .left o .right. Final-
ment, o bé la instruccié acaba amb .height, cas en el qual s’escriura l'algada del correspo-
nent subarbre, o ve seguida de = t', on t' és un string que representa un arbre, cas en el
qual t ' (com a arbre) sera assignat al corresponent subarbre de t. Per exemple:

t = 3(4,5(1,2))

<< t

t.height
t.left.height
t.right.height
t.right.left = 8(9,10)
<< t

t.right.height

La sortida de la seqiiéncia anterior és:

Com podeu observar, el height d’un arbre que esta per sobre del que hem assignat també
ha estat actualitzat.

Se suposa que la seqiiéncia d’entrada sera correcta (sense accessos fora de 'arbre, tot i que
si que es pot accedir a subarbres buits de 'arbre).

El programa principal que us oferim ja s’encarrega de llegir aquestes entrades i fer les crides
als corresponents metodes de la classe BinaryTree. Només cal que feu les modificacions
abans esmentades dins el fitxer BinaryTree. hpp.

Sortida

Per a cada instruccié << t, s’escriura el contingut actual de I’arbre. Per a cada instruccié
acabada en height, s’escriura l’algada del subarbre indicat. El programa que us oferim ja fa
aix0. Només cal que feu les modificacions abans esmentades dins el fitxer BinaryTree . hpp.

Exemple d’entrada 1 t.height
<< t

t = 7(2,5) £ = 501)



t.height Exemple de sortida 1

<< t

t.left = 4(2¢(, 3),2) 2

t.left.height 7(2,9)

<< t 2

t.left.left = 7(3,) 56 1)

t.left.height 3

<< t 5(4(2(,3),2),1)

t.right = 5(6(1,),2) 3

t.height 5(4(7(3,),2),1)

<< t 4

t.left.right = 5(,8¢(,3)) 5(4(7(3,),2),5(6(1,),2))

t.height 5

<< t 5(4(7(3,),5(,8¢(,3))),5(6(1,),2))
t.left.right.left = 1(3,4(3,2)) 6

t.height 5(4(7(3,),5(1(3,4(3,2)),8¢(,3))),5(6(1,),2))
<< t 3

t.right.right = 2(5(2,2),) 5(4(7(3,),5(1(3,4(3,2)),8(,3))),5(6(1,),2(5(2,2),)))
t.right.right.height 1

<< t 5(4(6,5(1(3,4(3,2)),8¢(,3))),5(6(1,),2(5(2,2),)))
t.left.left = 6 3

t.left.left.height 5(4(6,5(1(3,4(3,2)),8(,3))),5(6(1,),2(1,)))
<< t

t.right.right.left =1

t.right.height

<< t

Informacié del problema

Autoria: PRO1
Generacid: 2026-01-25T21:10:50.5577

© Jutge.org, 2006-2026.
https:/ /jutge.org


https://jutge.org

