
Jutge.org
The Virtual Learning Environment for Computer Programming

Trie TST. Llista ordenada de totes les claus. X37516_ca

Donada la classe 𝑑𝑖𝑐𝑐 que permet gestionar diccionaris on només hi guardem claus úniques
usant tries implementats amb la tècnica d’arbres ternaris de cerca (TST), cal implementar el
mètode

list <string> llista_ordenada_dec () const;
que retorna una llista amb totes les claus del diccionari ordenades de forma decreixent.
Les claus són del tipus string i els símbols utilitzats per construir el trie són els chars de les
claus. S’ha usat el char especial ’#’ per indicar la fi de la clau.
Cal enviar a jutge.org la següent especificació de la classe 𝑑𝑖𝑐𝑐 i la implementació del mètode
dins del mateix fitxer. La resta de mètodes públics i privats ja estan implementats. Indica el
cost en funció de 𝑠 (nombre de símbols que té l’alfabet) i 𝑙 (nombre mig de símbols que sol
tenir una clau).
#include <iostream>
#include <list>
using namespace std;
typedef unsigned int nat;

class dicc {
public:
// Constructora per defecte. Crea un diccionari buit.
dicc ();

// Destructora
~dicc();

void insereix (const string &k);
// Pre: True
// Post: Insereix la clau k en el diccionari. Si ja hi era, no fa res.

list <string> llista_ordenada_dec () const;
// Pre: True
// Post: Retorna una llista amb totes les claus ordenades decreixentment.

private:
struct node {
char _c ; // Símbol posició i-èssima de la clau
node∗ _esq ; // Fill esquerra, apunta a símbols mateixa posició formant un BST
node∗ _cen; // Fill central, apunta a símbols següent posició
node∗ _dre ; // Fill dret, apunta a símbols mateixa posició formant un BST
node(const char &c, node∗ esq = NULL, node∗ cen = NULL, node∗ dre = NULL);

};
node∗ _arrel ;

static void esborra_nodes(node∗ t );
static node∗ insereix (node ∗t , nat i , const string &k);



// Aquí va l’especificació dels mètodes privats addicionals
};

// Aquí va la implementació del mètode llista_ordenada_dec i privats addicionals

Degut a que jutge.org només permet l’enviament d’un fitxer amb la solució del problema,
en el mateix fitxer hi ha d’haver l’especificació de la classe i la implementació del mètode
𝑙𝑙𝑖𝑠𝑡𝑎_𝑜𝑟𝑑𝑒𝑛𝑎𝑑𝑎_𝑑𝑒𝑐 (el que normalment estarien separats en els fitxers .ℎ𝑝𝑝 i .𝑐𝑝𝑝).
Per testejar la classe disposes d’un programa principal que insereix claus en un diccionari i
després calcula i mostra la llista ordenada de totes les claus del diccionari.

Entrada
L’entrada conté una llista de strings separats per canvis de línia: són les claus que tindrà el
diccionari.

Sortida
Mostra la llista amb totes les claus ordenades demés gran amés petita, cada clau en una línia
diferent.

Observació
Només cal enviar la classe requerida, la implementació del mètode 𝑙𝑙𝑖𝑠𝑡𝑎_𝑜𝑟𝑑𝑒𝑛𝑎𝑑𝑎_𝑑𝑒𝑐 i el
cost en funció de 𝑠 (nombre de símbols que té l’alfabet) i 𝑙 (nombre mig de símbols que sol
tenir una clau). Pots ampliar la classe ambmètodes privats. Segueix estrictament la definició
de la classe de l’enunciat.

Exemple d’entrada 1 Exemple de sortida 1

Exemple d’entrada 2
OCA

Exemple de sortida 2
OCA

Exemple d’entrada 3
CASA

CAS

Exemple de sortida 3
CASA
CAS

Exemple d’entrada 4
DAU
DIT
AU
AVI
CASA
COP
CAP
CAPA
OU
OLA

UN
EXTRAMUR
FUM
FOC
ILLA
ALA
AL



Exemple de sortida 4
UN
OU
OLA
ILLA
FUM
FOC
EXTRAMUR
DIT

DAU
COP
CASA
CAPA
CAP
AVI
AU
ALA
AL

Exemple d’entrada 5
A

OU
DAU
DIT
AU
AI
ILLA
ALA
AL
I

Exemple de sortida 5
OU
ILLA
I
DIT
DAU
AU
ALA
AL
AI
A

Informació del problema
Autoria: Jordi Esteve

Generació: 2026-01-25T15:30:08.378Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

