
Jutge.org
The Virtual Learning Environment for Computer Programming

Examen práctica - Turno 2 - Problema 1 - Es código? X34462_es

1. El peso de este ejercicio en la nota del exámen de la práctica es de un 33.33% (1/3 de la
nota).

2. La evaluación es completamente automática (notamanual: 0%, nota automática: 100%)

3. El peso de los juegos de pruebas público y privado en el cálculo de la nota automática
es idéntico (público: 5/10, privado: 5/10).

Dado un arbol de códigos 𝑡 y un string 𝑠 de 0’s y 1’s queremos un procedimiento
void es_codigo(const BinTree< pair<string,int> >& t, const string& s,

int& res, string& codif);

que retorna con res == -1 si 𝑠 un prefijo del código de algún símbolo en el “treecode” 𝑡
pero no un código, retorna con res == 0 si 𝑠 es el código de algún símbolo en 𝑡, y retorna
con res == 1 si existe un código en 𝑡 que es un prefijo de 𝑠 pero 𝑠 no es un código. Además,
si res == 0 entonces en codif se devuelve el símbolo codificado por 𝑠, y en caso contrario
se retorna con codif == "**". Informalmente, res==0 si 𝑠 es un código en 𝑡, res==-1 si
𝑠 es “demasiado corto” y res==1 si 𝑠 es “demasiado largo”.

Por ejemplo, en el árbol 𝑡 de la figura los símbolos codificados son a, b, c, d, e y sus códigos
respectivos son 11, 100, 00, 101 y 01. Por lo tanto es_codigo(t, s, res, codif)
retornará con res==0 y codif=="c" si 𝑠 = "00". Si 𝑠 = "1001" entonces el procedimiento
retornará con res==1 y si 𝑠 = "10" entonces retornará con res==-1. En estos dos últimos
casos codif == "**" ya que en ambos tenemos res != 0).
Se os suministra un módulo (ficheros treecodeIO.cc y treecodeIO.hh) con las opera-
ciones de entrada/salida de “treecodes”. Con todo ello escribiréis un pequeño programa que
lee una serie de casos, cada caso formado por un “treecode” y una secuencia de strings bina-
rios e imprime, para cada caso, si los strings son códigos o no, y cúal es el símbolo codificado,
en su caso.

Entrada
La entrada consiste en una serie de casos. Para cada caso se da una secuencia en formato
válido que representa a un “treecode” (se puede leer usando la función leer_treecode
que os proporcionamos); si el treecode no es vacío, después del “treecode” viene un valor
entero 𝑘 ≥ 0 y a continuación una secuencia de 𝑘 strings binarios (esto es, sólo contienen 0s
y 1s).
La secuencia de casos termina con un “treecode” vacío, siendo todos los casos precedentes
“treecodes” que codifican 2 símbolos o más.

Salida
Para cada caso, si el “treecode” leído no es vacío, se imprime el valor 𝑘, seguido de 𝑘 ternas,
formada cada una por el correspondiente string 𝑠 dado, seguido del resultado res (-1, 0 o
1) y el valor del string codif (es decir, el símbolo codificado por 𝑠 si res == 0 o "**" si
res != 0).
La salida de cada caso acaba con un salto de línea.

Ejemplo de entrada 1
abdce 100 ce 43 c 18 -1 -1 -1 -1 e 25 -1 -1 -1 -1
abd 57 bd 27 b 12 -1 -1 -1 -1 d 15 -1 -1 -1 -1
a 30 -1 -1 -1 -1
4 00 101 1 110

R 36 A 16 B 8 e 4 -1 -1 -1 -1 C 4 n 2 -1 -1 -1 -1
D 2 o 1 -1 -1 -1 -1 u 1 -1 -1 -1 -1 E 8 a 4 -1 -1
-1 -1 F 4 t 2 -1 -1 -1 -1 m 2 -1 -1 -1 -1
G 20 H 8 I 4 i 2 -1 -1 -1 -1 J 2 x 1 -1 -1 -1 -1
p 1 -1 -1 -1 -1 K 4 h 2 -1 -1 -1 -1 s 2 -1 -1 -1 -1
L 12 M 5 N 2 r 1 -1 -1 -1 -1 l 1 -1 -1 -1 -1 f 3
-1 -1 -1 -1 spc 7 -1 -1 -1 -1
8 0110 00110 101 1111 000 10010 10111 0011
-1 -1

Ejemplo de salida 1
4 00 0 c 101 0 d 1 -1 ** 110 1 **
8 0110 0 t 00110 0 o 101 -1 ** 1111 1 ** 000 0 e 10010 0 x 10111 1 ** 0011 -1 **

Información del problema
Autoría: Profesores de PRO2

Generación: 2026-01-25T15:19:21.938Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

