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Executar instruccions d’assignaci6 X33949_ca

PRELIMINARS:

En aquest exercici assumim que ja heu resolt un exercici anterior a on havieu d’avaluar ex-
pressions amb variables. De fet, assumim que heu fet aix0 creant un fitxer evaluate.cc
amb la implementacié de la segiient funcié:

// Pre: t és un arbre no buit gue representa una expressid correcta

// sobre naturals i variables enteres, i els operadors +,—, *.

// Totes les variables que apareixen a t estan definides a variable2value.
// Les operacions no produeixen errors d'overflow.

// Post: Retorna 1'avaluacid de 1'expressid representada per t.
int evaluate (map<string, int> &variableZ2value, BinTree<string> t);

INTRODUCCIO:
En aquest exercici considerarem arbres que representen instruccions. Hiha dos tipus d’instruccions,
que es representen amb arbres tal i com s’explica a continuacio:

e Instrucci6 d’assignacié x = e, on x és una variable i e és una expressié. Per exemple,
el segiient arbre representa la instruccié x=3+4*y.

e Instruccié d’escriure per la sortida estandard Print (e), on e és una expressi6. Per
exemple, el segiient arbre representa la instruccié Print (3+4*y).
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Per a guardar els valors assignats sobre les variables usarem un map d’strings a enters anom-
enat variable2value.

EXERCICI:

Implementeu una funcié que, donat unmap<string, int>anomenat variable2value,i
donat un arbre binari d’strings t que representa, o bé una instruccié d’assignacié, o bé una in-
strucci6 d’escriptura per la sortida estandard, executa la instrucci6, modificant variable2value
o escrivint per la sortida, segons el cas. Aquesta és la capcelera:

// Pre: t és un arbre no buit que representa o bé una instruccidé d'assignacid
// 0 bé una instruccidé d'escriure per la sortida estandard.

// Totes les variables que apareixen a la expressidé de t estan definides a
// En el cas d'assignacid, la variable esquerra podria no estar definida a
// Les operacions no produeixen errors d'overiflow.

// Post: modifica variable2value o escriu per la sortida estandard un valor,

// simulant exactament la instruccidé que representa t.

void execute (map<string, int> &variable2value, BinTree<string> t);

La entrada del programa que crida a la funcié execute consisteix en una seqiiéncia d’instruccions
representades amb arbres tal i com hem explicat. Al principi, el programa assumeix que
variable2value és un map buit. Considereu les segiients instruccions d’exemple:

x=3

y=3+x

z=2* (x+y)
Print (z-y+x)

Aquestes instruccions, com a entrada del programa, queden representades aixi:
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Sianem cridanta execute passant aquests arbres, I'un després del’altre,iel mapa variable2value,
al final, hauriem de veure per la sortida el valor 15.

Fixeu-vos que l'enunciat d’aquest exercici ja ofereix uns fitxers que haureu d’utilitzar per a
compilar: Makefile, program.cc, BinaryTree.hh, evaluate.hh, execute.hh,
utils.hh, utils.cc. Us falta afegir el fitxer evaluate.cc que teniu fet d'un exercici

anterior, i crear el fitxer execute.cc amb els corresponents includes i implementar-hi

la funcié execute que hem explicat. Valdra la pena que utilitzeu algunes de les funcions

oferides a utils.hh. Quan pugeu la vostra soluci6 al jutge, només cal que pugeu un tar

construit aixi:

tar cf solution.tar execute.cc evaluate.cc

Entrada

La primera linia de l’entrada descriu el format en el que es descriuen els arbres, o bé INLINE-
FORMAT o bé VISUALFORMAT. Després ve una seqiiéncia d’arbres binaris d’strings que
alhora representen instruccions. Fixeu-vos en que el programa que us oferim ja s’encarrega
de llegir aquesta entrada. Només cal que implementeu la funcié abans esmentada.



Sortida

El programa dona com a sortida el que seria la sortida resultant d’executar la seqiiencia
d’instruccions donada d’entrada. Fixeu-vos en que el programa que us oferim ja s’encarrega
d’escriure aquesta sortida. Només cal que implementeu la funcié abans esmentada.

Exemple d’entrada 1
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Exemple d’entrada 2
INLINEFORMAT
Print (= (+(+(4,7),-(6,8)),-(8,2))
:(C,—(—(*(6,1) 4) , - (+(=(1,1),6)
Print (+(c,5),)
=(c,7)
=(cc,+(*(=(+(6,c),c),4),*(7,c)))
Print (- (7(+(+(c 3),-(7,2)),
=(b, *(9,+(+(+(9,4),-(cc,cc)),
Prlnt( (c,*(2,2)),)
=(d, - (- (+(*(3, ), 4),*(9,-(5,cc))),
Prlnt( (*(*(8,8),+(5,cc)),
Print (* (3, 3),)
= (b, b)
Print (*(*(1,-(1,-(3,6))),9),)
=(da, *(2,9))
Print (- (+(5,2),-(da, 8)),)
Print (* (5, -(cc,d)),)
=(b, - (+ (*(C d),2),*(+(1,b),-(da,4))))
(b,8)

Print (= (+(* (- (da, 6),+(b,da)), * (=

+(=(7,=(b,d)), 4

Print (- (- (+(d,5),cc), *(*(c,2),*

Exemple d’entrada 3

INLINEFORMAT
=(a,+(1,2))
Prlnt( )

=(b, *(3,4))

=(b (+( 2),2))
Prlnt(b)

=(a,-(9,b))
Prlnt(—(—(6 1),*(2,a)),)

=(c,*(2,a))

—(+(4,1),+(4,9c36) , * (* (= (1, ¢)

+(3,8))))

Exemple de sortida 1
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Exemple de sortida 2
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(4,cc)))))

4,3))),-(da, *(1,*(cc,da)))),)

=(a,+(*(c, 1), *
Print (a)

=(b, 1)

Print (* (= (b, 8),+(c, 6)),
Print (* (c,b),)

(3,¢)))

-(cc,2)),*



Exemple de sortida 3
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