Jutge.org

The Virtual Learning Environment for Computer Programming

Executar instruccions d’assignaci6 X33949_ca

PRELIMINARS:

En aquest exercici assumim que ja heu resolt un exercici anterior a on havieu d’avaluar ex-
pressions amb variables. De fet, assumim que heu fet aix0 creant un fitxer evaluate.cc
amb la implementacié de la segiient funcié:

// Pre: t és un arbre no buit gue representa una expressid correcta

// sobre naturals i variables enteres, i els operadors +,—, *.

// Totes les variables que apareixen a t estan definides a variable2value.
// Les operacions no produeixen errors d'overflow.

// Post: Retorna 1'avaluacid de 1'expressid representada per t.
int evaluate (map<string, int> &variableZ2value, BinTree<string> t);

INTRODUCCIO:
En aquest exercici considerarem arbres que representen instruccions. Hiha dos tipus d’instruccions,
que es representen amb arbres tal i com s’explica a continuacio:

e Instrucci6 d’assignacié x = e, on x és una variable i e és una expressié. Per exemple,
el segiient arbre representa la instruccié x=3+4*y.

e Instruccié d’escriure per la sortida estandard Print (e), on e és una expressi6. Per
exemple, el segiient arbre representa la instruccié Print (3+4*y).

Print

| |
4 y

Per a guardar els valors assignats sobre les variables usarem un map d’strings a enters anom-
enat variable2value.

EXERCICI:

Implementeu una funcié que, donat unmap<string, int>anomenat variable2value,i
donat un arbre binari d’strings t que representa, o bé una instruccié d’assignacié, o bé una in-
strucci6 d’escriptura per la sortida estandard, executa la instrucci6, modificant variable2value
o escrivint per la sortida, segons el cas. Aquesta és la capcelera:

// Pre: t és un arbre no buit que representa o bé una instruccidé d'assignacid
// 0 bé una instruccidé d'escriure per la sortida estandard.

// Totes les variables que apareixen a la expressidé de t estan definides a
// En el cas d'assignacid, la variable esquerra podria no estar definida a
// Les operacions no produeixen errors d'overiflow.

// Post: modifica variable2value o escriu per la sortida estandard un valor,

// simulant exactament la instruccidé que representa t.

void execute (map<string, int> &variable2value, BinTree<string> t);

La entrada del programa que crida a la funcié execute consisteix en una seqiiéncia d’instruccions
representades amb arbres tal i com hem explicat. Al principi, el programa assumeix que
variable2value és un map buit. Considereu les segiients instruccions d’exemple:

x=3

y=3+x

z=2* (x+y)
Print (z-y+x)

Aquestes instruccions, com a entrada del programa, queden representades aixi:

VISUALFORMAT
|

| |

X 3

| |

v +

2 +
|
| |
X Yy
Print
|
|
+
|
| |
- x
|
| |
Z Yy

Sianem cridanta execute passant aquests arbres, I'un després del’altre,iel mapa variable2value,
al final, hauriem de veure per la sortida el valor 15.

Fixeu-vos que l'enunciat d’aquest exercici ja ofereix uns fitxers que haureu d’utilitzar per a
compilar: Makefile, program.cc, BinaryTree.hh, evaluate.hh, execute.hh,
utils.hh, utils.cc. Us falta afegir el fitxer evaluate.cc que teniu fet d'un exercici

anterior, i crear el fitxer execute.cc amb els corresponents includes i implementar-hi

la funcié execute que hem explicat. Valdra la pena que utilitzeu algunes de les funcions

oferides a utils.hh. Quan pugeu la vostra soluci6 al jutge, només cal que pugeu un tar

construit aixi:

tar cf solution.tar execute.cc evaluate.cc

Entrada

La primera linia de l’entrada descriu el format en el que es descriuen els arbres, o bé INLINE-
FORMAT o bé VISUALFORMAT. Després ve una seqiiéncia d’arbres binaris d’strings que
alhora representen instruccions. Fixeu-vos en que el programa que us oferim ja s’encarrega
de llegir aquesta entrada. Només cal que implementeu la funcié abans esmentada.

Sortida

El programa dona com a sortida el que seria la sortida resultant d’executar la seqiiencia
d’instruccions donada d’entrada. Fixeu-vos en que el programa que us oferim ja s’encarrega
d’escriure aquesta sortida. Només cal que implementeu la funcié abans esmentada.

Exemple d’entrada 1

VISUALFORMAT
|
| |
a +
|
| |
1 2
Print
|
|
a
| |
b *
|
| |
3 4
| |
b *
|
| |
+ 2
|
| |
a 2
Print
|
|
b
|
a _

9 b
Print
\
\
\
| |
— *
| |
| | | |
6 1 2 a
| |
c *
|
| \
2 a
\ \
a +
\
| |
* *
| |
| | | I
c 1 3 c
Print

Print
\
\
*
\
| |
- +
| |
| | \ |
b 8 c 6
Print
|
|
*
|
| |
c b
Exemple d’entrada 2
INLINEFORMAT
Print (= (+(+(4,7),-(6,8)),-(8,2))
:(C,—(—(*(6,1) 4) , - (+(=(1,1),6)
Print (+(c,5),)
=(c,7)
=(cc,+(*(=(+(6,c),c),4),*(7,c)))
Print (- (7(+(+(c 3),-(7,2)),
=(b, *(9,+(+(+(9,4),-(cc,cc)),
Prlnt((c,*(2,2)),)
=(d, - (- (+(*(3,), 4),*(9,-(5,cc))),
Prlnt((*(*(8,8),+(5,cc)),
Print (* (3, 3),)
= (b, b)
Print (*(*(1,-(1,-(3,6))),9),)
=(da, *(2,9))
Print (- (+(5,2),-(da, 8)),)
Print (* (5, -(cc,d)),)
=(b, - (+ (*(C d),2),*(+(1,b),-(da,4))))
(b,8)

Print (= (+(* (- (da, 6),+(b,da)), * (=

+(=(7,=(b,d)), 4

Print (- (- (+(d,5),cc), *(*(c,2),*

Exemple d’entrada 3

INLINEFORMAT
=(a,+(1,2))
Prlnt()

=(b, *(3,4))

=(b (+(2),2))
Prlnt(b)

=(a,-(9,b))
Prlnt(—(—(6 1),*(2,a)),)

=(c,*(2,a))

—(+(4,1),+(4,9c36) , * (* (= (1, ¢)

+(3,8))))

Exemple de sortida 1

3
10
7
-8
-28
-2

Exemple de sortida 2

3
7
5199
3
3041
9

-3
-9330

/7620)
(F02} cc) , *

(4,cc)))))

4,3))),-(da, *(1,*(cc,da)))),)

=(a,+(*(c, 1), *
Print (a)

=(b, 1)

Print (* (= (b, 8),+(c, 6)),
Print (* (c,b),)

(3,¢)))

-(cc,2)),*

Exemple de sortida 3

3
10

Informacié del problema

Autoria: PRO2
Generacid: 2026-01-25T721:09:14.8577

© Jutge.org, 2006-2026.
https://jutge.org

-8
-28

https://jutge.org

