
Jutge.org
The Virtual Learning Environment for Computer Programming

Combinació de mònades 1 X32999_ca

En Haskell, la mònade State ens serveix per encapçular estats. Un valor de tipus @State s a@
és una funció d’un estat inicial @s@ cap una parella final valor estat @(a, s)@.
A continuació teniu un exemple simple del seu ús:

import Control.Monad
import Control.Monad.State

suma :: Int -> State Int Int
suma x = do

n <- get
let v = n + x
put v
return v

Aquesta funció l’hem creat per fer una funció que sumi tots els elements d’una llista no buida
utilitzant la mònade @State@. En aquest cas l’estat serà la suma acumulada, que correspon
al primer component de @State@. El segon component serà el valor resultat.
La funció @get@ s’utilitza per obtenir l’estat anterior, @put@ per generar l’estat següent i
@return@ per donar el valor de sortida.
Per executar un pas o canvi d’estat podem utilitzar la funció:

runState :: State s a -> s -> (a, s)

que aplicat a l’exemple donaria:
@runState (suma 1) 0@ → @(1, 1)@
on el @0@ correspon a l’estat inicial i @1@ al valor d’entrada. També podem obtenir com a
sortida només un dels dos valors amb:
@execState (suma 1) 0@ → @1@
@evalState (suma 1) 0@ → @1@
Es demana:

1. Crear una funció @foldState :: (a -> State t b) -> [a] -> t -> b@ per calcular el resultat
aplicar repetidament una funciómònadica agafant coma entrada els diferents elements
d’una llista.

2. Crear una funció mònadica @eval :: String -> State [Int] Int@ per avaluar la suma
d’enters en notació postfixa. Considereu que l’entrada sempre és correcta; el tracta-
ment d’errors es demana a continuació.

3. Crear una funció ampliada @eval2 :: String -> State [Maybe Int] (Maybe Int)@ amb
funcionalitat equivalent a l’anterior i amb control d’errors.

Observació
Aquests exercicis són la primera part d’un problema més gran.



Informació del problema
Autoria: Gerard Escudero

Generació: 2026-01-25T15:13:39.427Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

