Jutge.org

The Virtual Learning Environment for Computer Programming

Combinacié de monades 1 X32999 ca

En Haskell, la monade State ens serveix per encapgular estats. Un valor de tipus @State s a@
és una funcié d’un estat inicial @s@ cap una parella final valor estat @(a, s)@.
A continuaci6 teniu un exemple simple del seu us:

import Control.Monad
import Control.Monad.State

suma :: Int —-> State Int Int
suma x = do

n <— get

let v = n + x

put v

return v

Aquesta funcié 1'hem creat per fer una funcié que sumi tots els elements d"una llista no buida
utilitzant la monade @State@. En aquest cas 1’estat sera la suma acumulada, que correspon
al primer component de @State@. El segon component sera el valor resultat.

La funcié @get@ s’utilitza per obtenir I'estat anterior, @put@ per generar l'estat segiient i
@return@ per donar el valor de sortida.

Per executar un pas o canvi d’estat podem utilitzar la funcio:

runState :: State s a -> s —-> (a, s)

que aplicat a I'exemple donaria:

@runState (suma 1) 0@ - @(1, 1)@

on el @0@ correspon a 'estat inicial i @1@ al valor d’entrada. També podem obtenir com a
sortida només un dels dos valors amb:

@execState (suma 1) 0@ —» @l@

@evalState (suma 1) 0@ - @1@

Es demana:

1. Crear una funcié @foldState :: (a -> State tb) -> [a] -> t -> b@ per calcular el resultat
aplicar repetidament una funcié monadica agafant com a entrada els diferents elements
d’una llista.

2. Crear una funcié monadica @eval :: String -> State [Int] Int@ per avaluar la suma
d’enters en notaci6é postfixa. Considereu que 'entrada sempre és correcta; el tracta-
ment d’errors es demana a continuacio.

3. Crear una funcié ampliada @eval?2 :: String -> State [Maybe Int] (Maybe Int)@ amb
funcionalitat equivalent a I’anterior i amb control d’errors.
Observacié

Aquests exercicis s6n la primera part d"un problema més gran.



Informacié del problema

Autoria: Gerard Escudero
Generacio: 2026-01-25T15:13:39.4277.

© Jutge.org, 2006-2026.
https:/ /jutge.org


https://jutge.org

