
Jutge.org
The Virtual Learning Environment for Computer Programming

Control PRO2 - Turno 1 (Primavera 2017) X27643_es

Hemos decidido extender la clase Cjt_estudiants que habéis visto en el laboratorio con
una nueva funcionalidad que asigna automáticamente un número limitado de becas a los
estudiantes aprobados con mejores notas, y en caso de empate a los estudiantes aprobados
con mejores notas en orden descendente de DNI. Concretamente, hemos añadido dos méto-
dos públicos a la clase Cjt_estudiants: 1) b_assignades, que devuelve el número de
becas asignadas a estudiantes del conjunto (es decir, de estudiantes del conjunto que tienen
beca); 2) pos_max_no_becat, que devuelve la posición del mejor candidato a obtener una
beca del conjunto que todavía no tiene beca, si existe alguno, o -1 si no hay candidatos sin
beca. Un estudiante es candidato a obtener una beca si está aprobado. Dados dos candidatos
𝑒1 y 𝑒2 diremos que 𝑒1 es mejor que 𝑒2 si 𝑒1 tiene mejor nota que 𝑒2, o si 𝑒1 y 𝑒2 tienen la misma
nota y el DNI de 𝑒1 es mayor que el DNI de 𝑒2.
En todomomento el número de estudiantes con beca del conjunto n_bec será menor o igual
que el número de becas disponiblesMAX_BEC. Ademásn_becnunca será superior al número
de estudiantes aprobados na. Finalmente, si el número de estudiantes aprobados es mayor
o igual que el número de becas disponibles MAX_BEC, el número de estudiantes con beca
n_bec será igual a MAX_BEC.
Para implementar eficientemente esta funcionalidad hemos modificado la representación y
la invariante de la clase Estudiant de la manera descrita en el archivo Estudiant.hh. En
particular, representamos la información sobre si un estudiante tiene beca o no en los objetos
de la clase Estudiant, y no en los objetos de clase Cjt_estudiants. Esto es, para asignar
una beca al estudiante situado en la posición pos de vest hemos de utilizar la instrucción
vest[pos].modificar_beca(true); y similarmente para comprobar si tiene beca o está
aprobado. Leed con atención el archivo Estudiant.hh, especialmente las descripciones
de los nuevos atributos, la invariante y las especificaciones de las operaciones nuevas. Las
principales novedades de la clase Estudiant son:

• hemos incorporado un nuevo atributo amb_beca que permite representar información
sobre si el estudiande parámetro implícito tiene beca o no;

• hemos añadido el consultorte_becaquepermite comprobar si el estudiante parámetro
implícito tiene beca o no;

• hemos añadido elmodificador modificar_beca que permitemodificar la información
sobre si el estudiante parámetro implícito tiene beca o no;

• hemos añadido el consultor aprovat que permite comprobar si el estudiante paráme-
tro implícito está aprobado o no;

• hemos añadido elmétodo static y público major_nota_dni que permite comparar
dos estudiantes por nota y en caso de empate por DNI.

También hemos modificado la representación y la invariante de la clase Cjt_estudiants
de la manera descrita en el archivo Cjt_estudiants.hh. La principal novedad es que al-
macenamos la posición del mejor candidato no becado del conjunto en un nuevo atributo
i_max_no_becat, de manera que si en algún momento hay una beca disponible conoz-
camos la posición del estudiante al cual hemos de asignar esta beca. Leed con atención el
archivo Cjt_estudiants.hh, especialmente las descripciones de los nuevos atributos, la



invariante y las especificaciones de las operaciones nuevas. Las principales novedades de la
clase Cjt_estudiants.hh son:

• hemos incorporado un nuevo atributo static y constante MAX_BEC que especifica el
número de becas disponibles;

• hemos incorporado un nuevo atributo n_bec que contiene el número de estudiantes
que tienen beca del parámetro implícito, que equivale al número de becas asignadas a
estudiantes del p.i. de las MAX_BEC becas disponibles;

• hemos añadido un consultor b_assignades que permite consultar el valor del atrib-
uto n_bec;

• hemos incorporado un nuevo atributo i_max_no_becat que contiene la posición del
mejor candidato no becado del parámetro implícito. Si hay candidatos no becados en el
parámetro implícito, entonces i_max_no_becat contiene la posición del mejor can-
didato no becado y su valor está dentro del intervalo 0≤ i_max_no_becat< nest;
en caso contrario, es decir, si no hay candidatos sin beca, el valor del atributo i_max_
no_becat es igual a -1.

• hemos añadido el consultor público pos_max_no_becat, para consultar la posición
del mejor candidato no becado. Si hay candidatos sin beca en el conjunto parámetro
implícito devuelve i_max_no_becat+1, y si no hay candidatos sin beca devuelve -1.

• y hemos añadido el modificador privado recalcular_pos_max_no_becat para re-
calcular el valor del atributo i_max_no_becat cuando sea necesario.

Teniendo esto en cuenta debéis implementar eficientemente el siguiente método privado sin
utilizar la operación sort de la biblioteca <algorithm>:

void recalcular_pos_max_no_becat();
/* Pre: cierto */
/* Post: Si hay candidatos no becados en el conjunto parámetro
implícito, el atributo i_max_no_becat contiene la posición del
mejor candidato no becado y su valor esta dentro del intervalo
0 <= i_max_no_becat < nest; si no hay candidatos sin beca, el
atributo i_max_no_becat es igual a -1. */

y el siguiente método público sin utilizar la operación sort de la biblioteca <algorithm>.
Observad que cuando borramos un estudiante con beca del conjunto, su beca se asigna al
mejor candidato no becado del conjunto, si hay alguno. Si el conjunto no contiene candidatos
no becados, la beca del estudiante borrado no se asigna a ningún estudiante. Obviamente, si
borramos un estudiante no becado, el número de estudiantes que tienen beca no semodifica.

void esborrar_estudiant(int x, bool& trobat);
/* Pre: cert */
/* Post: Si el parámetro implícito original contenía un estudiante con
DNI = x, trobat es true, el p.i. contiene los mismos estudiantes que
el original menos el estudiante con DNI = x, se han actualizado los
estudiantes becados del p.i. si ha sido necesario, y se ha actualizado
la posición del mejor candidato no becado del p.i. si ha sido necesario;
en otro caso, trobat es false y el p.i. es igual al original. */



Observación
Debéis entregar un fichero solucio.cc con una implementación eficiente de las opera-
ciones recalcular_pos_max_no_becat y esborrar_estudiant que ha de tener el
siguiente formato:

#include "Cjt_estudiants.hh"

void Cjt_estudiants::recalcular_pos_max_no_becat() {
... // código de la implementación

}

void Cjt_estudiants::esborrar_estudiant(int x, bool& trobat) {
... // código de la implementación

}

Copiad esta plantilla en vuestro solucio.cc y completadla. Vuestro solucio.cc no
puede contener la implementación de otras operaciones de la clase.
En el apartado Public files del Jutge os proporcionamos material adicional comprimido en un
fichero .tar. Podéis descomprimir este fichero con el comando

tar -xvf nom_fitxer.tar

Este material adicional contiene los siguientes ficheros:

• Cjt_estudiants.hh: la especificación Pre/Post de todas las operaciones públicas y
privadas de esta nueva versión de la clase Cjt_estudiants, así como la definición de
los atributos privados. Fijaos que hemos añadido tres atributos n_bec, i_max_no_
becat y MAX_BEC, y que hemos modificado la invariante de la representación de
Cjt_estudiants. Es muy importante que la implementación de las operaciones
que os hemos encargado tenga en cuenta ypreserve la invariante de la representación.
Fijaos también que hay cuatro operaciones nuevas: el modificador privado recalcu-
lar_pos_max_no_becat y los consultores públicos bec_disp, b_assignades,
pos
_max_no_becat.

• Cjt_estudiants.cc: la implementación de todas las operaciones de la nueva ver-
sión de la clase Cjt_estudiants excepto las operaciones que os pedimos.

• Estudiant.hh: la especificación de la clase Estudiant y la definición de sus atri-
butos. Las principales novedades que presenta son un atributo amb_beca que indica
si se ha concedido una beca al estudiante parámetro implícito, y los métodos públicos
te_beca, modificar_beca, aprovat y major_nota_dni.

• Estudiant.cc: la implementación de los métodos de la clase Estudiant.

• pro2.cc: un programa principal que podéis utilizar para probar losmétodos públicos
de esta versión de la clase Cjt_estudiants.

• llegeixme.txt: instrucciones para generar el ejecutable del programa pro2 y pro-
barlo.

Valoraremos positivamente que la solución no contenga instrucciones (especialmente bucles
o llamadas a operaciones costosas) ni objetos (especialmente vectores o conjuntos) innece-
sarios, que no haga recorridos cuando debería hacer búsquedas, y que use correctamente las



operaciones más eficientes de la clase siempre que sea posible. No se puede usar ninguna
estructura de datos que no haya aparecido en las sesiones 1-4 de laboratorio.

La utilización de la operación sort de la biblioteca <algorithm> en el archivo solucio.
cc comportará una calificación de 0 en la corrección manual del control.

Cuando hagáis envíos, el Jutge os indicará cuantos juegos de pruebas pasa vuestro programa
y de qué tipo (público o privado). El juego de pruebas denominado público corresponde
a los ficheros entrada.txt y sortida_correcta.txt del apartado Public files.

Información del problema
Autoría: Professors de PRO2
Traducción: Professors de PRO2

Generación: 2026-01-25T14:49:12.990Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

