Jutge.org

The Virtual Learning Environment for Computer Programming

Control PRO2 - Turno 1 (Primavera 2017) X27643_es

Hemos decidido extender la clase Cjt_estudiants que habéis visto en el laboratorio con
una nueva funcionalidad que asigna automdticamente un ndmero limitado de becas a los
estudiantes aprobados con mejores notas, y en caso de empate a los estudiantes aprobados
con mejores notas en orden descendente de DNI. Concretamente, hemos afiadido dos méto-
dos publicos a la clase Cjt_estudiants: 1) b_assignades, que devuelve el nimero de
becas asignadas a estudiantes del conjunto (es decir, de estudiantes del conjunto que tienen
beca); 2) pos_max_no_becat, que devuelve la posicién del mejor candidato a obtener una
beca del conjunto que todavia no tiene beca, si existe alguno, o -1 si no hay candidatos sin
beca. Un estudiante es candidato a obtener una beca si esta aprobado. Dados dos candidatos
ey e, diremos que e; es mejor que e, si e; tiene mejor nota que e,, 0 siey y e, tienen la misma
nota y el DNI de e; es mayor que el DNI de e;.

En todo momento el nimero de estudiantes con beca del conjunto n_bec serd menor o igual
que el niimero de becas disponibles MAX_BEC. Ademds n_bec nunca serd superior al nimero
de estudiantes aprobados na. Finalmente, si el nimero de estudiantes aprobados es mayor
o igual que el nimero de becas disponibles MAX_BEC, el nimero de estudiantes con beca
n_bec serd igual a MAX_BEC.

Para implementar eficientemente esta funcionalidad hemos modificado la representacion y
la invariante de la clase Estudiant de la manera descrita en el archivo Estudiant .hh. En
particular, representamos la informacién sobre si un estudiante tiene beca o no en los objetos
delaclase Estudiant, y no enlos objetos de clase Cjt_estudiants. Esto es, para asignar
una beca al estudiante situado en la posiciéon pos de vest hemos de utilizar la instruccién
vest [pos] .modificar_beca (true) ; y similarmente para comprobar si tiene beca o esta
aprobado. Leed con atencién el archivo Estudiant .hh, especialmente las descripciones
de los nuevos atributos, la invariante y las especificaciones de las operaciones nuevas. Las
principales novedades de la clase Estudiant son:

e hemos incorporado un nuevo atributo amb_beca que permite representar informacién
sobre si el estudiande pardmetro implicito tiene beca o no;

e hemos afiadido el consultor te_beca que permite comprobar si el estudiante parametro
implicito tiene beca o no;

e hemos aftadido el modificador modificar_beca que permite modificar la informacién
sobre si el estudiante parametro implicito tiene beca o no;

e hemos afnadido el consultor aprovat que permite comprobar si el estudiante pardme-
tro implicito estd aprobado o no;

e hemos afiadido el método staticy publicomajor_nota_dni que permite comparar
dos estudiantes por nota y en caso de empate por DNL

También hemos modificado la representacién y la invariante de la clase Cjt_estudiants
de la manera descrita en el archivo Cjt_estudiants.hh. La principal novedad es que al-
macenamos la posicién del mejor candidato no becado del conjunto en un nuevo atributo
i_max_no_becat, de manera que si en algiin momento hay una beca disponible conoz-
camos la posicién del estudiante al cual hemos de asignar esta beca. Leed con atencién el
archivo Cjt_estudiants.hh, especialmente las descripciones de los nuevos atributos, la



invariante y las especificaciones de las operaciones nuevas. Las principales novedades de la
clase Cjt_estudiants.hh son:

e hemos incorporado un nuevo atributo static y constante MAX_BEC que especifica el
nimero de becas disponibles;

e hemos incorporado un nuevo atributo n_bec que contiene el nimero de estudiantes
que tienen beca del pardmetro implicito, que equivale al nimero de becas asignadas a
estudiantes del p.i. de las MAX_BEC becas disponibles;

e hemos afiadido un consultor b_assignades que permite consultar el valor del atrib-
uto n_bec;

e hemos incorporado un nuevo atributo i_max_no_becat que contiene la posicién del
mejor candidato no becado del pardmetro implicito. Sihay candidatos no becados en el
pardmetro implicito, entonces i_max_no_becat contiene la posicién del mejor can-
didato no becado y su valor esta dentro del intervalo 0< i_max_no_becat< nest;
en caso contrario, es decir, si no hay candidatos sin beca, el valor del atributo i_max_
no_becat esigual a-1.

e hemos afiadido el consultor ptblico pos_max_no_becat, para consultar la posiciéon
del mejor candidato no becado. Si hay candidatos sin beca en el conjunto pardmetro
implicito devuelve i_max_no_becat+1, y si no hay candidatos sin beca devuelve -1.

e y hemos afiadido el modificador privado recalcular_pos_max_no_becat parare-
calcular el valor del atributo i_max_no_becat cuando sea necesario.

Teniendo esto en cuenta debéis implementar eficientemente el siguiente método privado sin
utilizar la operacion sort de la biblioteca <algorithm>:

void recalcular_pos_max_no_becat () ;

/* Pre: cierto */

/* Post: Si hay candidatos no becados en el conjunto pardmetro
implicito, el atributo i_max_no_becat contiene la posicidén del
mejor candidato no becado y su valor esta dentro del intervalo
0 <= i_max_no_becat < nest; si no hay candidatos sin beca, el
atributo i_max_no_becat es igual a -1. */

y el siguiente método ptublico sin utilizar la operacién sort de la biblioteca <algorithm>.
Observad que cuando borramos un estudiante con beca del conjunto, su beca se asigna al
mejor candidato no becado del conjunto, si hay alguno. Si el conjunto no contiene candidatos
no becados, la beca del estudiante borrado no se asigna a ningtin estudiante. Obviamente, si
borramos un estudiante no becado, el nimero de estudiantes que tienen beca no se modifica.

void esborrar_estudiant (int x, boolé& trobat) ;

/* Pre: cert */

/* Post: Si el pardmetro implicito original contenia un estudiante con
DNI = x, trobat es true, el p.i. contiene los mismos estudiantes que

el original menos el estudiante con DNI = x, se han actualizado los
estudiantes becados del p.i. si ha sido necesario, y se ha actualizado
la posicién del mejor candidato no becado del p.i. si ha sido necesario;
en otro caso, trobat es false y el p.i. es igual al original. */



Observacion

Debéis entregar un fichero solucio.cc con una implementacion eficiente de las opera-
ciones recalcular_pos_max_no_becat y esborrar_estudiant que ha de tener el
siguiente formato:

#include "Cjt_estudiants.hh"

void Cijt_estudiants::recalcular_pos_max_no_becat () {
// cbébdigo de la implementacidn

}

void Cjt_estudiants::esborrar_estudiant (int x, bool& trobat) {
// cbébdigo de la implementacidn

}

Copiad esta plantilla en vuestro solucio.cc y completadla. Vuestro solucio.cc no
puede contener la implementacién de otras operaciones de la clase.

En el apartado Public files del Jutge os proporcionamos material adicional comprimido en un
fichero .tar. Podéis descomprimir este fichero con el comando

tar —xvf nom_fitxer.tar
Este material adicional contiene los siguientes ficheros:

e Cjt_estudiants.hh: la especificacion Pre/Post de todas las operaciones publicas y
privadas de esta nueva versién de la clase Cjt_estudiants, asi como la definicién de
los atributos privados. Fijaos que hemos afiadido tres atributos n_bec, i_max_no_
becat y MAX_BEC, y que hemos modificado la invariante de la representaciéon de
Cjt_estudiants. Es muy importante que la implementacién de las operaciones
que os hemos encargado tenga en cuenta y preserve la invariante de la representacion.
Fijaos también que hay cuatro operaciones nuevas: el modificador privado recalcu-
lar_pos_max_no_becat y los consultores publicos bec_disp, b_assignades,
pos
_max_no_becat.

e Cjt_estudiants.cc: la implementacién de todas las operaciones de la nueva ver-
sién de la clase Cjt_estudiants excepto las operaciones que os pedimos.

e Estudiant.hh: la especificacion de la clase Estudiant y la definicién de sus atri-
butos. Las principales novedades que presenta son un atributo amb_beca que indica
si se ha concedido una beca al estudiante pardmetro implicito, y los métodos ptublicos
te_beca, modificar_beca, aprovat ymajor_nota_dni.

e Estudiant.cc: laimplementacion de los métodos de la clase Estudiant.

e pro2.cc: unprograma principal que podéis utilizar para probar los métodos ptiblicos
de esta version de la clase Cjt_estudiants.

e llegeixme.txt: instrucciones para generar el ejecutable del programa pro2 y pro-
barlo.

Valoraremos positivamente que la solucién no contenga instrucciones (especialmente bucles
o llamadas a operaciones costosas) ni objetos (especialmente vectores o conjuntos) innece-
sarios, que no haga recorridos cuando deberia hacer bisquedas, y que use correctamente las



operaciones més eficientes de la clase siempre que sea posible. No se puede usar ninguna
estructura de datos que no haya aparecido en las sesiones 1-4 de laboratorio.

La utilizacién de la operacion sort de la biblioteca <algorithm> en el archivo solucio.
cc comportard una calificacién de 0 en la correcciéon manual del control.

Cuando haggdis envios, el Jutge os indicard cuantos juegos de pruebas pasa vuestro programa
y de qué tipo (publico o privado). El juego de pruebas denominado publico corresponde
alos ficheros entrada.txt y sortida_correcta.txt del apartado Public files.

Informacién del problema

Autoria: Professors de PRO2
Traduccidon: Professors de PRO2

Generacion: 2026-01-25T14:49:12.990Z

© Jutge.org, 2006-2026.
https:/ /jutge.org


https://jutge.org

