
Jutge.org
The Virtual Learning Environment for Computer Programming

Control PRO2 - Torn 1 (Primavera 2017) X27643_ca

Hem decidit estendre la classe Cjt_estudiants que heu vist al laboratori amb una nova
funcionalitat que assigna automàticament un nombre limitat de beques als estudiants apro-
vats amb millors notes i, en cas d’empat, als estudiants aprovats amb millors notes en ordre
descendent per DNI. Concretament, hem afegit dos mètodes públics a la classe Cjt_estu-
diants: 1) b_assignades, que retorna el nombre de beques assignades a estudiants del
conjunt (és a dir, el nombre d’estudiants del conjunt que tenen beca); 2)pos_max_no_becat,
que retorna la posició del millor candidat a obtenir una beca del conjunt que encara no té
beca, si existeix algú, o -1 si no hi ha candidats sense beca. Un estudiant és candidat a obtenir
una beca si està aprovat. Donats dos candidats 𝑒1 i 𝑒2 direm que 𝑒1 és millor que 𝑒2 si 𝑒1 té
millor nota que 𝑒2, o si 𝑒1 i 𝑒2 tenen la mateixa nota i el DNI d’𝑒1 és més gran que el DNI d’𝑒2.
En tot moment el nombre d’estudiants amb beca del conjunt n_bec serà més petit o igual
al nombre de beques disponibles MAX_BEC. A més n_bec serà més petit o igual al nombre
d’estudiants aprovats na. Finalment, si el nombre de estudiants aprovats és major o igual
al nombre de beques disponibles MAX_BEC, el nombre d’estudiants amb beca del conjunt
n_bec serà igual a MAX_BEC.
Per implementar eficientment aquesta funcionalitat hem modificat la representació i l’inva-
riant de la classe Estudiant de la manera descrita a l’arxiu Estudiant.hh. En partic-
ular, representem la informació sobre si un estudiant té beca o no als objectes de la classe
Estudiant, i no als objectes de classe Cjt_estudiants. Això vol dir que per assignar una
beca a l’estudiant situat a la posicióposdevesthemd’utilitzar la instruccióvest[pos].mo-
dificar_beca(true); i semblantment per comprovar si té beca o està aprovat. Llegiu amb
cura l’arxiu Estudiant.hh, especialment les descripcions dels nous atributs, l’invariant i
les especificacions de les operacions noves. Les principals novetats de la classe Estudiant
són:

• hem incorporat un nou atribut amb_beca que permet representar informació sobre si
l’estudiant paràmetre implícit té beca o no;

• hem afegit el consultor te_beca que permet comprovar si l’estudiant paràmetre im-
plícit té beca o no;

• hem afegit el modificador modificar_beca que permet modificar la informació sobre
si l’estudiant paràmetre implícit té beca o no;

• hem afegit el consultor aprovat que permet comprovar si l’estudiant paràmetre im-
plícit està aprovat o no;

• hem afegit el mètode static i públic major_nota_dni que permet comparar dos
estudiants per nota i en cas d’empat per DNI;

També hemmodificat la representació i l’invariant de la classe Cjt_estudiants de laman-
era descrita a l’arxiu Cjt_estudiants.hh. La principal novetat és que emmagatzemem
la posició del millor candidat no becat del conjunt en un nou atribut i_max_no_becat, de
manera que si en algunmoment hi ha una beca disponible coneguem la posició de l’estudiant
al qual li hem d’assignar aquesta beca. Llegiu amb cura l’arxiu Cjt_estudiants.hh, espe-
cialment les descripcions dels nous atributs, l’invariant i les especificacions de les operacions
noves. Les principals novetats de la classe Cjt_estudiants.hh són:



• hem incorporat un nou atribut static i constant MAX_BEC que especifica el nombre
de beques disponibles;

• hem incorporat un nou atribut n_bec que conté el nombre d’estudiants que tenen beca
del paràmetre implícit, que equival al nombre de beques assignades a estudiants del
p.i. de les MAX_BEC beques disponibles;

• hem afegit un consultor b_assignades que permet consultar el valor de l’atribut
n_bec;

• hem incorporat un nou atributi_max_no_becat que conté la posició delmillor candi-
dat no becat del paràmetre implícit. Si hi ha candidats no becats al paràmetre implícit,
llavors i_max_no_becat conté la posició del millor candidat no becat i el seu valor
està dins de l’interval 0 ≤ i_max_no_becat < nest; en cas contrari, és a dir, si no
hi ha candidats sense beca, el valor de l’atribut i_max_no_becat és igual a -1;

• hem afegit el consultor públic pos_max_no_becat, per consultar la posició del millor
candidat no becat. Si hi ha candidats sense beca al conjunt paràmetre implícit retorna
i_max_no_becat+1, i si no hi ha candidats sense beca retorna -1.

• i hem afegit el modificador privat recalcular_pos_max_no_becat per recalcular
el valor de l’atribut i_max_no_becat quan sigui necessari.

Tenint això en compte heu d’implementar eficientment el següent mètode privat sense util-
itzar l’operació sort de la biblioteca <algorithm>:

void recalcular_pos_max_no_becat();
/* Pre: cert */
/* Post: Si hi ha candidats sense beca al conjunt paràmetre implícit,
l'atribut i_max_no_becat conté la posició del millor candidat no becat
i el seu valor està dins de l'interval 0 <= i_max_no_becat < nest; si
no hi ha candidats sense beca, l'atribut i_max_no_becat és igual a -1. */

i el següent mètode públic sense utilitzar l’operació sort de la biblioteca <algorithm>.
Noteu que quan esborrem un estudiant amb beca del conjunt, la seva beca s’assigna al millor
candidat no becat del conjunt, si n’hi ha cap. Si el conjunt no conté candidats no becats, la beca
de l’estudiant esborrat no s’assigna a cap estudiant. Obviament, si esborrem un estudiant no
becat, el nombre d’estudiants que tenen beca no es modifica.

void esborrar_estudiant(int x, bool& trobat);
/* Pre: cert */
/* Post: Si el paràmetre implícit original contenia un estudiant amb

DNI = x, trobat és true, el p.i. conté els mateixos estudiants
que l'original menys l'estudiant amb DNI = x, s'han actualizat
els estudiants becats del p.i. si ha estat necessari, i s'ha
actualitzat la posició del millor candidat no becat del p.i. si
ha estat necessari; en cas contrari, trobat és false i el p.i.
és igual a l'original. */

Observació
Heu de lliurar un fitxer solucio.cc amb una implementació eficient de les operacions
recalcular_pos_max_no_becat i esborrar_estudiant que ha de tenir el següent
format:



#include "Cjt_estudiants.hh"

void Cjt_estudiants::recalcular_pos_max_no_becat() {
... // codi de la implementació

}

void Cjt_estudiants::esborrar_estudiant(int x, bool& trobat) {
... // codi de la implementació

}

Copieu aquesta plantilla en el vostre solucio.cc i completeu-la. El vostre solucio.cc
no pot contenir la implementació d’altres operacions de la classe.
A l’apartat Public files del Jutge us proveïm amb material addicional comprimit en un fitxer
.tar. Podeu descomprimir aquest fitxer amb la comanda

tar -xvf nom_fitxer.tar

Aquest material addicional consisteix en els següents fitxers:
• Cjt_estudiants.hh: l’especificació Pre/Post de totes les operacions públiques i pri-

vades d’aquesta nova versió de la classe Cjt_estudiants, així como la definició dels
atributs privats. Fixeu-vos que hem afegit tres atributs n_bec, i_max_no_becat i
MAX_BEC, i que hem modificat l’invariant de la representació de Cjt_estudiants.
És molt important que la implementació de les operacions que us hem encarregat
tingui en compte i preservi l’invariant de la representació. Fixeu-vos també que hi ha
quatre operacions noves: el modificador privat recalcular_pos_max_no_becat i
els consultors públics bec_disp, b_assignades, pos_max_no_becat.

• Cjt_estudiants.cc: la implementació de totes de les operacions de la nova versió
de la classe Cjt_estudiants tret de les operacions que us demanem.

• Estudiant.hh: l’especificació de la classeEstudiant i la definició dels seus atributs.
Les principals novetats que presenta són un atribut amb_beca que indica si s’ha con-
cedit una beca a l’estudiant paràmetre implícit, i elsmètodepúblicsaprovat, te_beca,
modificar_beca i major_nota_dni.

• Estudiant.cc: la implementació dels mètodes de la classe Estudiant.

• pro2.cc: un programa principal que podeu fer servir per provar els mètodes públics
d’aquesta versió de la classe Cjt_estudiants.

• llegeixme.txt: instruccions per a generar l’executable del programa pro2 i provar-
lo.

Valorarem positivament que la solució no contingui instruccions (especialment bucles o
crides a operacions costoses) ni objectes (especialment vectors o conjunts) innecessaris, que
no faci recorreguts quan hauria de fer cerques, i que usi correctament les operacions més
eficients de la classe sempre que sigui possible. No es pot emprar cap estructura de dades
que no hagi aparegut a les sessions 1-4 de laboratori.

La utilització de l’operació sort de la biblioteca<algorithm> a l’arxiu solucio.cc com-
portarà una qualificació de 0 a la correcció manual del control.

Quan feu els enviaments el Jutge us indicarà quants jocs de proves passeu i de quin tipus
(públic o privat). El joc de proves anomenat públic correspon als fitxers entrada.txt i
sortida_correcta.txt de l’apartat Public files.



Informació del problema
Autoria: Professors de PRO2

Generació: 2026-01-25T14:49:17.652Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

