Jutge.org

The Virtual Learning Environment for Computer Programming

Control PRO2 - Torn 1 (Primavera 2017) X27643_ca

Hem decidit estendre la classe Cjt_estudiants que heu vist al laboratori amb una nova
funcionalitat que assigna automaticament un nombre limitat de beques als estudiants apro-
vats amb millors notes i, en cas d’empat, als estudiants aprovats amb millors notes en ordre
descendent per DNI. Concretament, hem afegit dos metodes publics a la classe Cjt_estu-
diants: 1) b_assignades, que retorna el nombre de beques assignades a estudiants del
conjunt (és a dir, el nombre d’estudiants del conjunt que tenenbeca); 2) pos_max_no_becat,
que retorna la posicié del millor candidat a obtenir una beca del conjunt que encara no té
beca, si existeix algt, o -1 si no hi ha candidats sense beca. Un estudiant és candidat a obtenir
una beca si esta aprovat. Donats dos candidats e; i e, direm que e; és millor que e, si e¢; té
millor nota que e,, 0 si ey ie, tenen la mateixa nota i el DNI d’e; és més gran que el DNI d’e,.
En tot moment el nombre d’estudiants amb beca del conjunt n_bec sera més petit o igual
al nombre de beques disponibles MAX_BEC. A més n_bec sera més petit o igual al nombre
d’estudiants aprovats na. Finalment, si el nombre de estudiants aprovats és major o igual
al nombre de beques disponibles MAX_BEC, el nombre d’estudiants amb beca del conjunt
n_bec sera igual a MAX_BEC.

Per implementar eficientment aquesta funcionalitat hem modificat la representaci6 i 1'inva-
riant de la classe Estudiant de la manera descrita a I’arxiu Estudiant .hh. En partic-
ular, representem la informacié sobre si un estudiant té beca o no als objectes de la classe
Estudiant,ino als objectes de classe Cjt_estudiants. Aix0 vol dir que per assignar una
beca al’estudiant situat a la posicié pos de ve st hem d’utilitzar la instruccié vest [pos] .mo-
dificar_beca (true) ; isemblantment per comprovar si té beca o esta aprovat. Llegiu amb
cura l’arxiu Estudiant . hh, especialment les descripcions dels nous atributs, I'invariant i
les especificacions de les operacions noves. Les principals novetats de la classe Estudiant
son:

e hem incorporat un nou atribut amb_beca que permet representar informacié sobre si
I'estudiant parametre implicit té beca o no;

e hem afegit el consultor te_beca que permet comprovar si I'estudiant parametre im-
plicit té beca o no;

e hem afegit el modificador modificar_beca que permet modificar la informacié sobre
si 'estudiant parametre implicit té beca o no;

e hem afegit el consultor aprovat que permet comprovar si l'estudiant parametre im-
plicit esta aprovat o no;

e hem afegit el métode static i ptblic major_nota_dni que permet comparar dos
estudiants per nota i en cas d’empat per DNI;

També hem modificat la representaci6 i l'invariant de la classe Cjt_estudiants de la man-
era descrita a I'arxiu Cjt_estudiants.hh. La principal novetat és que emmagatzemem
la posicié del millor candidat no becat del conjunt en un nou atribut i_max_no_becat, de
manera que si en algun moment hi ha una beca disponible coneguem la posicié de I’estudiant
al qual li hem d’assignar aquesta beca. Llegiu amb cural’arxiu Cjt_estudiants.hh, espe-
cialment les descripcions dels nous atributs, 'invariant i les especificacions de les operacions
noves. Les principals novetats de la classe Cjt_estudiants.hh sén:



e hem incorporat un nou atribut static i constant MAX_BEC que especifica el nombre
de beques disponibles;

e hem incorporat un nou atribut n_bec que conté el nombre d’estudiants que tenen beca
del parametre implicit, que equival al nombre de beques assignades a estudiants del
p.i. de les MAX_BEC beques disponibles;

e hem afegit un consultor b_assignades que permet consultar el valor de I'atribut
n_bec;

e hem incorporat unnouatribut i_max_no_becat que conté la posici6 del millor candi-
dat no becat del parametre implicit. Si hi ha candidats no becats al parametre implicit,
llavors i_max_no_becat conté la posicié del millor candidat no becat i el seu valor
esta dinsdel’'interval 0 < i_max_no_becat < nest;en cas contrari, és a dir, si no
hi ha candidats sense beca, el valor de I’atribut i_max_no_becat ésigual a-1;

e hem afegit el consultor ptblic pos_max_no_becat, per consultar la posicié del millor
candidat no becat. Si hi ha candidats sense beca al conjunt parametre implicit retorna
i_max_no_becat+1,isino hiha candidats sense beca retorna -1.

e i hem afegit el modificador privat recalcular_pos_max_no_becat per recalcular
el valor de l'atribut i_max_no_becat quan sigui necessari.

Tenint aixo en compte heu d’implementar eficientment el segiient metode privat sense util-
itzar l'operaci6 sort de la biblioteca <algorithm>:

void recalcular_pos_max_no_becat () ;

/* Pre: cert */

/* Post: Si hi ha candidats sense beca al conjunt parametre implicit,
l'atribut i_max_no_becat conté la posicidé del millor candidat no becat

i el seu valor esta dins de 1l'interval 0 <= i_max_no_becat < nest; si

no hi ha candidats sense beca, l'atribut i_max_no_becat és igual a -1. */

i el seglient metode public sense utilitzar 1'operacié sort de la biblioteca <algorithm>.
Noteu que quan esborrem un estudiant amb beca del conjunt, la seva beca s’assigna al millor
candidatno becat del conjunt, sin’hi ha cap. Siel conjunt no conté candidats no becats, la beca
de l'estudiant esborrat no s’assigna a cap estudiant. Obviament, si esborrem un estudiant no
becat, el nombre d’estudiants que tenen beca no es modifica.

void esborrar_estudiant (int x, boolé& trobat) ;

/* Pre: cert */

/* Post: Si el parametre implicit original contenia un estudiant amb
DNI = x, trobat és true, el p.i. conté els mateixos estudiants
que l'original menys l'estudiant amb DNI = x, s'han actualizat
els estudiants becats del p.i. si ha estat necessari, i s'ha
actualitzat la posicidé del millor candidat no becat del p.i. si
ha estat necessari; en cas contrari, trobat és false i el p.i.
és igual a l'original. */

Observaci6

Heu de lliurar un fitxer solucio.cc amb una implementacié eficient de les operacions
recalcular_pos_max_no_becat i esborrar_estudiant que ha de tenir el segiient
format:



#include "Cjt_estudiants.hh"

void Cijt_estudiants::recalcular_pos_max_no_becat () {
// codi de la implementacid

}

void Cijt_estudiants::esborrar_estudiant (int x, bool& trobat) {
// codi de la implementacid

}

Copieu aquesta plantilla en el vostre solucio.cc i completeu-la. El vostre solucio.cc
no pot contenir la implementacié d’altres operacions de la classe.

A Tapartat Public files del Jutge us proveim amb material addicional comprimit en un fitxer
.tar. Podeu descomprimir aquest fitxer amb la comanda

tar —xvf nom_fitxer.tar
Aquest material addicional consisteix en els segtients fitxers:

e Cjt_estudiants.hh: l'especificacié Pre/Post de totes les operacions ptibliques i pri-
vades d’aquesta nova versi6 de la classe Cjt_estudiants, aixi como la definici6 dels
atributs privats. Fixeu-vos que hem afegit tres atributs n_bec, i_max_no_becati
MAX_BEC, i que hem modificat I'invariant de la representaci6é de Cjt_estudiants.
Es molt important que la implementacié de les operacions que us hem encarregat
tingui en compte i preservi l’invariant de la representacié. Fixeu-vos també que hi ha
quatre operacions noves: el modificador privat recalcular_pos_max_no_becat i
els consultors publics bec_disp, b_assignades, pos_max_no_becat.

e Cjt_estudiants.cc: laimplementaci6é de totes de les operacions de la nova versié
de la classe Cjt_estudiants tret de les operacions que us demanem.

e Estudiant.hh: l'especificacié delaclasse Estudiant ila definici6 dels seus atributs.
Les principals novetats que presenta sén un atribut amb_beca que indica si s’ha con-
cedit unabeca a l'estudiant parametre implicit, i els metode ptiblics aprovat, te_beca,
modificar_becaimajor_nota_dni.

e Estudiant.cc: laimplementaci6 dels metodes de la classe Estudiant.

e pro2.cc: un programa principal que podeu fer servir per provar els métodes ptblics
d’aquesta versi6 de la classe Cjt_estudiants.

e llegeixme.txt: instruccions per a generar I’executable del programa pro2 i provar-
lo.

Valorarem positivament que la solucié no contingui instruccions (especialment bucles o
crides a operacions costoses) ni objectes (especialment vectors o conjunts) innecessaris, que
no faci recorreguts quan hauria de fer cerques, i que usi correctament les operacions més
eficients de la classe sempre que sigui possible. No es pot emprar cap estructura de dades
que no hagi aparegut a les sessions 1-4 de laboratori.

La utilitzacié de 'operacié sort delabiblioteca <algorithm>al’arxiu solucio.cc com-
portara una qualificacié de 0 a la correccié manual del control.

Quan feu els enviaments el Jutge us indicara quants jocs de proves passeu i de quin tipus
(public o privat). El joc de proves anomenat puiblic correspon als fitxers entrada.txt i
sortida_correcta.txt del’apartat Public files.



Informacié del problema

Autoria: Professors de PRO2
Generacio: 2026-01-25T14:49:17.6527

© Jutge.org, 2006-2026.
https:/ /jutge.org


https://jutge.org

