Jutge.org

The Virtual Learning Environment for Computer Programming

Adaptar BinaryTree per a mantenirinformacié sobre la sumaX27581_ca

L'objectiu d’aquest exercici és afegir un nou metode get Sumala classe GenericaBinaryTree
que retorni la suma dels nodes de 1’arbre. Obviament, aixd0 només tindra sentit per a tipus
de dades per als quals la operacié de suma (+) esta definida. Assumirem com a precondi-
cié que mai es crida a aquesta funcié amb l'arbre buit. En tal cas, una opci6é raonable seria
emetre un missatge d’error i abortar I’execucié. En el cas d’arbres amb un sol node, la suma
sera el propi node.

Una opci6 seria que aquest metode calculés la suma dels nodes, per exemple recursivament,
ila retornés, perd aquest enfoc seria massa lent per a poder superar els jocs de proves privats.
Aquesta operaci6 hauria de tenir cost constant, i per aixo, convindra afegir informacié adi-
cional a la classe que permeti mantenir actualitzada informaci6 sobre la suma. A continuaci6
donem una guia de com fer aixo.

D’entre els fitxers que s’adjunten en aquest exercici, trobareu BinaryTree.old.hpp, a on
hi ha una implementacié de la classe genérica BinaryTree. En primer lloc, haureu de fer:

cp BinaryTree.old.hpp BinaryTree.hpp

A continuaci6, heu de fer tot un seguit de canvis sobre la classe BinaryTree definida a
BinaryTree.hpp:

e Heu d’afegir un nou atribut T sum.

e Heu d’afegir un nou metode privat per a actualitzar la suma de l’arbre i la suma dels
seus antecessors (els arbres que tenen a 1’arbre actual com a subarbre). Aix0 es pot fer
de forma recursiva o iterativa. Una possible manera iterativa és:

void updateSum/()
{

if (isEmpty()) {
cerr << "Error: sum on empty tree" << endl;
exit (1) ;

}

BinaryTree<T> *pt = this;
while (pt != NULL) ({
pt—>sum = ...;

if (not pt-—>left->isEmpty())
pt—>sum += ...;

if (not pt->right->isEmpty())
pt—->sum += ...;

pt = pt—>parent;

}

}

Una possible manera recursiva és:

void updateSum()

{

if (isEmpty()) {

cerr << "Error: sum on empty tree" << endl;
exit (1) ;

}

sum = ...;

if (not left->isEmpty())

sum += ...;

if (not right->isEmpty())

sum += ...;

if (parent != NULL) parent—->updateSum() ;
}

e A les constructores i a l'operaci6 d’assignacié heu d’afegir crides a updateSum. Aqui
heu de vigilar: sil’arbre creat és buit, no haurieu de cridar a updateSum de l'arbre im-
plicit, pero potser si a updateSum del nostre antecessor en casos especials de 'operacié
assignacio per als quals tinguem un antecessor previament definit.

e Heu d’implementar el metode get Sum, simplement retornant el valor del nou atribut.

D’entre els fitxers que s’adjunten a ’exercici també hi ha program. cpp (programa princi-
pal) iMakefile pera compilar. Per a pujar la vostra soluci6, heu de crear el fitxer solution.tar
aixi:

tar cf solution.tar BinaryTree.hpp

Entrada

El programa principal té una variable d’arbre d’enters t, inicialment buida, i llegeix instruc-
cions que, o bé mostren com és t, o bé modifiquen algun subarbre de t o mostren la suma
d’algun subarbre de t. Les instruccions que mostren t sén simplement de la forma << t.
Les altres instruccions comencen per t, seguit d'una seqiiéencia de .left o .right. Final-
ment, o bé la instruccié acaba amb . sum, cas en el qual s’escriura la suma del corresponent
subarbre, o ve seguida de = t', on t' és un string que representa un arbre, cas en el qual
t' (com a arbre) sera assignat al corresponent subarbre de t. Per exemple:

t = 3(4,5(1,2))

<

t.sum

t.left.sum
t.right.sum
t.right.left = 8(9,10)
<< t

t.right.sum
La sortida de la seqiiéncia anterior és:

3(4,5(1,2))
15
4

8
3(4,5(8(9,10),2))
34

Com podeu observar, el sum d"un arbre que esta per sobre del que hem assignat també ha
estat actualitzat.

Se suposa que la seqiiéncia d’entrada sera correcta (sense accessos fora de 'arbre, tot i que
si que es pot accedir a subarbres buits de ’arbre).

El programa principal que us oferim ja s’encarrega de llegir aquestes entrades i fer les crides
als corresponents metodes de la classe BinaryTree. Només cal que feu les modificacions
abans esmentades dins el fitxer BinaryTree. hpp.

Sortida

Per a cada instruccié << t, s’escriura el contingut actual de I’arbre. Per a cada instruccié
acabada en sum, s’escriura la suma del subarbre indicat. El programa que us oferim ja fa aixo.
Només cal que feu les modificacions abans esmentades dins el fitxer BinaryTree . hpp.

Exemple d’entrada 1 Exemple de sortida 1

t = 7(2,5) 14

t.sum 7(2,5)

<< t 6

t = 5¢(1) 5(,1)

t.sum 11

<< t 5(4(2(,3),2),1)

t.left = 4(2(, 3),2) 16

t.left.sum 5(4(7(3,),2),1)

<< t 35

t.left.left = 7(3,) 5(4(7(3,),2),5(6(1,),2))

t.left.sum 49

<< t 5(4(7(3,),5(,8(,3))),5(6(1,),2))

t.right = 5(6(1,),2) 62

t.sum S5(4(7(3,),5(1(3,4(3,2)),8¢(,3))),5(6(1,),2))
<< t 11

t.left.right = 5(,8¢(, 3)) 5(4(7(3,),5(1(3,4(3,2)),8(,3))),5(6(1L,),2(5(2,2),)))
t.sum 6

<< t 5(4(6,5(1(3,4(3,2)),8(,3))),5(6(1,),2(5(2,2),)))
t.left.right.left = 1(3,4(3,2)) 15

t.sum 5(4(6,5(1(3,4(3,2)),8¢(,3))),5(6(1,),2(1,)))
<< t

t.right.right = 2(5(2,2),)
t.right.right.sum

<< t

t.left.left = 6
t.left.left.sum

<< t

t.right.right.left =1
t.right.sum

<< t
Exemple d’entrada 2 t = 4(5,1)
<< t
t =7 t.left.left = 4(2,3)
<< t t.left.sum
t =5 << t
<< t

t.right = ()

t.sum

<< t

t.left = 4(7,)
t.sum

<< t
t.left.right = 2
t.sum

<< t

t =2

<< t

t =0

<< t

t = ()

<< t

Informacié del problema

Autoria: PRO1
Generacio: 2026-01-25T21:06:31.639Z

© Jutge.org, 2006-2026.
https://jutge.org

Exemple de sortida 2

https://jutge.org

