
Jutge.org
The Virtual Learning Environment for Computer Programming

Adaptar BinaryTreeper amantenir informació sobre la sumaX27581_ca

L’objectiu d’aquest exercici és afegir unnoumètodegetSum a la classeGenèricaBinaryTree
que retorni la suma dels nodes de l’arbre. Obviament, això només tindrà sentit per a tipus
de dades per als quals la operació de suma (+) està definida. Assumirem com a precondi-
ció que mai es crida a aquesta funció amb l’arbre buit. En tal cas, una opció raonable seria
emetre un missatge d’error i abortar l’execució. En el cas d’arbres amb un sol node, la suma
serà el propi node.
Una opció seria que aquest mètode calculés la suma dels nodes, per exemple recursivament,
i la retornés, però aquest enfoc seria massa lent per a poder superar els jocs de proves privats.
Aquesta operació hauria de tenir cost constant, i per això, convindrà afegir informació adi-
cional a la classe que permeti mantenir actualitzada informació sobre la suma. A continuació
donem una guia de com fer això.
D’entre els fitxers que s’adjunten en aquest exercici, trobareu BinaryTree.old.hpp, a on
hi ha una implementació de la classe genèrica BinaryTree. En primer lloc, haureu de fer:

cp BinaryTree.old.hpp BinaryTree.hpp

A continuació, heu de fer tot un seguit de canvis sobre la classe BinaryTree definida a
BinaryTree.hpp:

• Heu d’afegir un nou atribut T sum.

• Heu d’afegir un nou mètode privat per a actualitzar la suma de l’arbre i la suma dels
seus antecessors (els arbres que tenen a l’arbre actual com a subarbre). Això es pot fer
de forma recursiva o iterativa. Una possible manera iterativa és:

void updateSum()
{
if (isEmpty()) {
cerr << "Error: sum on empty tree" << endl;
exit(1);
}
BinaryTree<T> *pt = this;
while (pt != NULL) {
pt->sum = ...;
if (not pt->left->isEmpty())
pt->sum += ...;
if (not pt->right->isEmpty())
pt->sum += ...;
pt = pt->parent;
}
}

Una possible manera recursiva és:



void updateSum()
{
if (isEmpty()) {
cerr << "Error: sum on empty tree" << endl;
exit(1);
}
sum = ...;
if (not left->isEmpty())
sum += ...;
if (not right->isEmpty())
sum += ...;
if (parent != NULL) parent->updateSum();
}

• A les constructores i a l’operació d’assignació heu d’afegir crides a updateSum. Aquí
heu de vigilar: si l’arbre creat és buit, no haurieu de cridar a updateSum de l’arbre im-
plícit, però potser sí a updateSum del nostre antecessor en casos especials de l’operació
assignació per als quals tinguem un antecessor prèviament definit.

• Heu d’implementar el mètode getSum, simplement retornant el valor del nou atribut.

D’entre els fitxers que s’adjunten a l’exercici també hi ha program.cpp (programa princi-
pal) iMakefileper a compilar. Per a pujar la vostra solució, heude crear el fitxersolution.tar
així:

tar cf solution.tar BinaryTree.hpp

Entrada
El programa principal té una variable d’arbre d’enters t, inicialment buida, i llegeix instruc-
cions que, o bé mostren com és t, o bé modifiquen algun subarbre de t o mostren la suma
d’algun subarbre de t. Les instruccions que mostren t són simplement de la forma << t.
Les altres instruccions comencen per t, seguit d’una seqüència de .left o .right. Final-
ment, o bé la instrucció acaba amb .sum, cas en el qual s’escriurà la suma del corresponent
subarbre, o ve seguida de = t', on t' és un string que representa un arbre, cas en el qual
t' (com a arbre) serà assignat al corresponent subarbre de t. Per exemple:

t = 3(4,5(1,2))
<< t
t.sum
t.left.sum
t.right.sum
t.right.left = 8(9,10)
<< t
t.right.sum

La sortida de la seqüència anterior és:

3(4,5(1,2))
15
4



8
3(4,5(8(9,10),2))
34

Com podeu observar, el sum d’un arbre que està per sobre del que hem assignat també ha
estat actualitzat.
Se suposa que la seqüència d’entrada serà correcta (sense accessos fora de l’arbre, tot i que
sí que es pot accedir a subarbres buits de l’arbre).
El programa principal que us oferim ja s’encarrega de llegir aquestes entrades i fer les crides
als corresponents mètodes de la classe BinaryTree. Només cal que feu les modificacions
abans esmentades dins el fitxer BinaryTree.hpp.

Sortida
Per a cada instrucció << t, s’escriurà el contingut actual de l’arbre. Per a cada instrucció
acabada en sum, s’escriurà la suma del subarbre indicat. El programa que us oferim ja fa això.
Només cal que feu les modificacions abans esmentades dins el fitxer BinaryTree.hpp.

Exemple d’entrada 1
t = 7(2,5)
t.sum
<< t
t = 5(,1)
t.sum
<< t
t.left = 4(2(,3),2)
t.left.sum
<< t
t.left.left = 7(3,)
t.left.sum
<< t
t.right = 5(6(1,),2)
t.sum
<< t
t.left.right = 5(,8(,3))
t.sum
<< t
t.left.right.left = 1(3,4(3,2))
t.sum
<< t
t.right.right = 2(5(2,2),)
t.right.right.sum
<< t
t.left.left = 6
t.left.left.sum
<< t
t.right.right.left = 1
t.right.sum
<< t

Exemple de sortida 1
14
7(2,5)
6
5(,1)
11
5(4(2(,3),2),1)
16
5(4(7(3,),2),1)
35
5(4(7(3,),2),5(6(1,),2))
49
5(4(7(3,),5(,8(,3))),5(6(1,),2))
62
5(4(7(3,),5(1(3,4(3,2)),8(,3))),5(6(1,),2))
11
5(4(7(3,),5(1(3,4(3,2)),8(,3))),5(6(1,),2(5(2,2),)))
6
5(4(6,5(1(3,4(3,2)),8(,3))),5(6(1,),2(5(2,2),)))
15
5(4(6,5(1(3,4(3,2)),8(,3))),5(6(1,),2(1,)))

Exemple d’entrada 2
t = 7
<< t
t = 5
<< t

t = 4(5,1)
<< t
t.left.left = 4(2,3)
t.left.sum
<< t
t.right = ()



t.sum
<< t
t.left = 4(7,)
t.sum
<< t
t.left.right = 2
t.sum
<< t
t = 2
<< t
t = ()
<< t
t = ()
<< t

Exemple de sortida 2
7
5
4(5,1)
14
4(5(4(2,3),),1)
18
4(5(4(2,3),),)
15
4(4(7,),)
17
4(4(7,2),)
2
()
()

Informació del problema
Autoria: PRO1

Generació: 2026-01-25T21:06:31.639Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

