Jutge.org

The Virtual Learning Environment for Computer Programming

Evitar a un altre iterador a base de quedar-se quiet X20209_ca

Tipicament, executar ++ sobre un iterador que es troba al end de la llista produeix error
d’execuci6, i executar —— sobre un iterador que es troba al begin de la llista també produeix
error d’execucié. Per comencar, en aquest exercici modificarem la subclasse iterator de
la classe List de manera que els errors d’execucié abans esmentats ja no es produiran. Sim-
plement, en tals casos els iteradors no es mouran.

Després modificarem la classe iterator afegint dos nous métodes avoidi stopAvoid, i
canviant el comportament dels metodes ++ i —— com descrivim a continuacio.

El nou metode avoid rebra un altre iterator com a parametre (és a dir, un iterador
del mateix tipus, tot i que potser apunta a un element d’una llista diferent). Una crida
it0.avoid(itl) provocara que, a partir d’ara, 1t0 intenti evitar apuntar al mateix lloc
que it1, a base d’evitar moviments que ho poden provocar.

Més concretament, amb una crida it0++ o ++it0, l'iterador it0 no es moura si fer-ho
provoca que it 0 apuntial mateix lloc que it 1. En particular, si it 0 apunta a l'altim element
de lallistai it1 apunta al end de la llista, llavors les crides 1t 0++ o ++it 0 no provocaran
cap canvi.

Analogament, amb una crida it0-- 0 —-it0, l'iterador it 0 no es moura si fer-ho provoca
que it 0 apunti al mateix lloc que it1. En particular, si i1t0 apunta al segon element de
la llista i 1t1 apunta al primer element de la llista, llavors les crides it0-- 0 ——it0 no
provocaran cap canvi.

Fixeu-vos que la crida it0.avoid (it1l) no imposa restriccions al moviment de it1. Per
tant, a base de fer crides que mouen it 1, pot acabar passant que 1t 0i it 1 apuntint al mateix
lloc.

Una crida posterior it0.avoid (it2) posa restriccions al moviment de it 0 respecte de
it2, perd també deixa sense efecte la crida anterior it0.avoid (it1), ésadir, cancel.lales
restriccions del moviment de 1t 0 respecte de 1t 1.

Una crida posterior it0.stopAvoid () cancella les restriccions del moviment de it 0 re-
specte de qualsevol altre iterador.

Fixeu-vos en aquest exemple per tal d’acabar d’entendre-ho:

List<int> 10, 11;
List<int>::iterator a, b, c, d;

10.push_back (1) ; // 10: 1,
10.push_back (2) ; // 10: 1,2,
10.push_back (3) ; // 10: 1,2, 3,
11.push_back (4) ; // 11: 4,
11.push_back (5) ; // 11: 4,5,
11.push_back (6) ; // 11: 4,5,6,

a = 10.begin () ; // 10: 1la, 2,3,
b = 10.end(); // 10: 1la,2,3,b
c = 1ll.begin(); // 11: 4c,5, 6,
d = 1ll.end(); // 11: 4¢,5,6,d

a——; // 10: 1a,2,3,b

a++; // 10: 1,2a,3,b
b++; // 10: 1,2a,3,b

b——; // 10: 1, 2a, 3b,
a.avoid(b) ;

a++; // 10: 1, 2a, 3b,
b——; // 10: 1,2ab, 3,
at+; // 10: 1,2b, 3a,
a—-—; // 10: 1,2b, 3a,
b++; // 10: 1,2, 3ab,

a.avoid(c) ;
c.avoid(d) ;
d.avoid(c) ;

a++; // 10: 1,2,3b,a 11: 4c,5,6,d
a-—; // 10: 1,2,3ab, 11: 4c,5,6,d
c——; // 10: 1,2,3ab, 1l1: 4c,5,6,d
c++; // 10: 1,2, 3ab, 11: 4,5c,6,d
c++; // 10: 1,2,3ab, 1l1: 4,5,6c,d
Ctt; // 10: 1,2,3ab, 11: 4,5,6c,d
d-—; // 10: 1,2,3ab, 11: 4,5,6c,d
c——; // 10: 1,2,3ab, 11: 4,5c,6,d
d--; // 10: 1,2,3ab, 11: 4,5c,6d,
c.stopAvoid() ;

CH+; // 10: 1,2,3ab, 11: 4,5,6cd,
c++; // 10: 1,2,3ab, 11: 4,5,6d,c
dt+; // 10: 1,2,3ab, 11: 4,5,6d,c
d.stopAvoid() ;

d++; // 10: 1,2, 3ab, 11: 4,5,6,cd

D’entre els fitxers que s’adjunten en aquest exercici, trobareu 1ist .hh, a on hi ha una im-
plementaci6 de la classe genérica List. Haureu d’implementar els dos nous metodes avoid
i stopAvoid dins 1ist.hh a la part publica de la classe iterator (podeu trobar les
capgaleres comentades dins 1ist . hh), i modificar els dos metodes ++ i els dos metodes —-
convenientment (en realitat només cal modificar el pre-increment i el pre-decrement perque
el post-increment i post-decrement criden als primers). Necessitareu també algun atribut
addicional per tal de recordar si l'iterador té un avoid actiu i amb qui, amb les convenients
inicialitzacions.

Msés concretament, heu de fer els canvis que s’indiquen en algunes parts del codi de list.hh:

// Iterators mutables
class iterator {
friend class List;
private:
List *plist;
Item *pitem;
// Add new attributes to remember if the iterator has an active
// and with which other iterator.

public:

iterator () {

"avoid'

//
//
//
//
//
//
it
/*

/*

//
//
//
//
//
//
it
/*

/*

//

// Add initialization of new attributes.

Adapt this function so that moving beyond boundaries does not trigger er
but leaves the iterator unchanged instead.

Also, add the necessary adaptations so that, the move does not take plac
when there is an active 'avoid' and such a move implies pointing to the
the other involved iterator

Preincrement
erator operator++ ()

Pre: el p.i apunta a un element E de la llista,

que no és el end() */

Post: el p.i apunta a l'element seglient a E

el resultat és el p.i. */

if (pitem == (plist—->itemsup)) |
cerr << "Error: ++iterator at the end of list" << endl;
exit (1) ;

}

pitem = pitem->next;

return *this;

Adapt this function so that moving beyond boundaries does not trigger er
but leaves the iterator unchanged instead.

Also, add the necessary adaptations so that, the move does not take plac
when there is an active 'avoid' and such a move implies pointing to the
the other involved iterator

Predecrement

erator operator—-()

Pre: el p.1i apunta a un element E de la llista que

no és el begin() */

Post: el p.i apunta a l'element anterior a E,

el resultat és el p.i. */

if (pitem == plist—->iteminf.next) {

cerr << "Error: —-—iterator at the beginning of 1list" << endl;
exit (1) ;

}
pitem = pitem->prev;
return *this;

Pre: 'it' != 'this'

// Post: Once executed, any move attempt (++ or --) on 'this' will cause no
// if such a move makes 'this' point to the same place as 'it'.

// All former avoid's are cancelled.

// Remove comment marks and implement this function:

// void avoid(iterator &it) {

/7 0}

// Pre: 'this' has an active avoid.

// Post: All former avoid's are cancelled.

// Remove comment marks and implement this function:
// void stopAvoid() {

// 0}

No cal decidir que passa amb assignacions entre iteradors existents, doncs no es consideraran
en els jocs de proves.

D’entre els fitxers que s’adjunten a I'exercici també hi ha main.cc (programa principal), i
el podeu compilar directament, doncs inclou 1ist.hh. Només cal que pugeu 1ist.hh al
jutge.

Entrada
L'entrada del programa comenga amb una declaraci6é d'unes quantes llistes (10, 11, ...)
i uns quants iteradors (a, b, c, ...), i després té una seqiiéncia de comandes sobre les

llistes i els iteradors declarats. Com que ja us oferim el main.cc, no cal que us preocu-
peu d’implementar la lectura d’aquestes entrades. Només cal que implementeu la extensié
de la classe iterator abans esmentada.

Per simplificar, no hi haura comandes que eliminin elements de les llistes, com pop_back,
pop_front i erase. Podeu suposar que les comandes no fan coses extranyes, com fer
que un iterador tingui un avoid a si mateix, i que sempre que un iterador sigui mogut,
aquest estara apuntant a alguna posicié d’alguna llista. Podeu suposar que les comandes
faran st opAvoid només sobre iteradors que tinguin un avoid actiu. Pero pot ser el cas que
es faci un avoid sobre un iterador que ja tingui un avoid actiu. Com mencionavem abans,
en aquestes situacions només 'tltim avoid aplica.

Sortida

Per a cada comanda d’escriptura sobre la sortida s’escriura el resultat corresponent. Elmain.cc
que us oferim ja fa aixd. Només cal que implementeu la extensi6 de la classe iterator abans
esmentada.

Exemple d’entrada 1 11 .push_back(6); // 11: 4,5,6,

List<int> 10 , 11 ; a =10 .begin(); // 10: 1a,2,3,

List<int>::iterator a , b , ¢, d ; b = 10 .end(); // 10: 1a,2,3,b
c =11 .begin(); // 11: 4c¢, 5,6,

10 .push_back(1); /7 10: 1, d =11 .end(); // 11: 4c,5,6,d

10 .push_back(2); // 10: 1,2,

10 .push_back(3); // 10: 1,2,3, cout<< 10 <<endl;

11 .push_back(4); // 11: 4, cout<< 11 <<endl;

11 .push_back(5); // 11: 4,5,

cout<<
cout<<

cout<<
cout<<

b ++;

cout<<
cout<<

b ——;

cout<<
cout<<

10
11

10
11

10
11

10
11

a .avoid(

a ++;

cout<<
cout<<

b ——;

cout<<
cout<<

a ++;

cout<<
cout<<

cout<<
cout<<

b ++;

cout<<
cout<<

O 00 9

++;

cout<<
cout<<

10
11

10
11

10
11

10
11

10
11

.avoid/(
.avoid(
.avoid/(

10
11

10
11

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

<<endl;
<<endl;

!/

1/

/!

1/

1/

!/

/7

1/

1/

// 10:

// 10:

// 10:

10:

10:

10:

10:

10:

10:

10:

10:

10:

la,2,3,b

1,2a,3,b

1,2a,3,b

1,2a, 3b,

1,2a, 3b,

1, 2ab, 3,

1, 2b, 3a,

1,2b, 3a,

1,2, 3ab,

1,2,3b,a

1,2,3ab,

1,2, 3ab,

11

11:

11:

cout<< 10 <<endl;
cout<< 11 <<endl;

c ++;

cout<< 10 <<endl;
cout<< 11 <<endl;

C ++;

cout<< 10 <<endl;
cout<< 11 <<endl;

c ++;

cout<< 10 <<endl;
cout<< 11 <<endl;

cout<< 10 <<endl;
cout<< 11 <<endl;

cout<< 10 <<endl;
cout<< 11 <<endl;

cout<< 10 <<endl;
cout<< 11 <<endl;

c .stopAvoid();
c ++;

cout<< 10 <<endl;
cout<< 11 <<endl;

C ++;
d ++;

cout<< 10 <<endl;
cout<< 11 <<endl;

d .stopAvoid() ;
d ++;

cout<< 10 <<endl;
:cdat, $5 61 H <<endl;

4c,5,6,d

4c,5,6,d

1/

1/

/7

1/

!/

/7

/7

1/

/7

//

10:

10:

10:

10:

10:

10:

10:

10:

10:

10:

1,2, 3ab,

1,2, 3ab,

1,2, 3ab,

1,2, 3ab,

1,2, 3ab,

1,2, 3ab,

1,2, 3ab,

1,2,3ab,

1,2, 3ab,

1,2, 3ab,

11:

11:

11:

11:

11:

11:

11:

11:

11:

11:

4,5c,6,d

4,5,6¢c,d

4,5,6¢c,d

4,5,6¢c,d

4,5c,6,d

4,5c, 6d,

4,5, 6cd,

4,5,6d,c

4,5,6d,c

4,5,6,cd

Exemple de sortida 1

1,2a, 3b,
4c,5,6,d
1,2a, 3b,
4c,5,6,d
1, 2ab, 3,
4c,5,6,d
1,2b, 3a,
4c,5,6,d
1, 2b, 3a,
4c,5,6,d
1,2, 3ab,
4c,5,6,d
1,2,3b,a

Exemple d’entrada 2

List<int> 10 , 11 ;
List<int>::iterator a ,

a = 11 .begin();
b = 10 .begin();
c = 11 .begin();
d = 11 .begin();
e = 11 .begin();
b .avoid(c);

b .avoid(e);

a =11 .begin();
b .stopAvoid() ;
b ++;

cout<< 10 <<endl;
e = 10 .begin();

-— ¢ ;
e ++;

— e
++ b ;

b =11 .end();
cout<< 11 <<endl;

e ——;

b .avoid(a);
cout<< 10 <<endl;

c = 10 .begin();
cout<< 11 <<endl;
11 .push_back(1);
b = 11 .end();
cout<< 11 <<endl;

c = 10 .end();

c -

cout<< 10 <<endl;
cout<< 11 .size()<<endl;
c ++;

d .avoid(e);
cout<< 11 <<endl;

4c,5,6,d
1,2, 3ab,
4c,5,06,d
1,2, 3ab,
4¢c,5,6,d
1,2, 3ab,
4,5c,6,d
1,2, 3ab,
4,5,6¢c,d
1,2, 3ab,
4,5,6¢c,d

e ++;

cout<< 10 <<endl;
cout<< 10 <<endl;
++ b ;

a .avoid(d);

c .avoid(e);

c ++;

a = 10 .begin();
a —;

10 .push_back(2);
— c ;

a =11 .end();

++ c ;

cout<< 10 <<endl;
cout<< 11 <<endl;

11 .insert(d , -1);
e .avoid(d);
a ++;

cout<< 10 <<endl;

b .avoid(a);

++ a ;

cout<< 11 <<endl;

d .avoid(e);

++ b ;

e ++;

cout<< 11 <<endl;

d .avoid(c);

a —=;

11 .insert(b , 4);
a ——j;

-—-d ;

a ——j

cout<< 11 <<endl;

d .stopAvoid() ;

10 .push_back(-3);
d .avoid(a);

cout<< 10 .size()<<endl;
e .avoid(c);
-—d ;

++ b ;

cout<< 11 <<endl;
++ e ;

a .avoid(c);

10 .push_back(3);
c ++;

c -3

cout<< 11 <<endl;
cout<< 10 <<endl;
cout<< 11 <<endl;

d .avoid(e);

++ b ;

b = 10 .begin();
cout<< 11 .size()<<endl;
b ++;

a ++;

++ d ;

e ++;

e —;

__b’-

a =11 .end();
cout<< 10 <<endl;

— e ;
— e ;
a ——;
e ++;

10 .insert (
c .avoid(e
++ e ;
++ d ;
cout<< 10 <<endl;

c .avoid(b);

b ——;

11 .push_back(4);
b = 10 .begin();

11 .push_back(-2);
++ a ;

e ++;

cout<< 10 <<endl;

b =11 .end();

e ++;

a .avoid(c);

10 .push_back(3);
++ ¢ ;

11 .insert (
e .avoid(b
++ b ;
cout<< 10 <<endl;
b =10 .end();
cout<< 10 <<endl;
++ e ;

cout<< 11 <<endl;

7

b, 2);
)

a, -1);
).

1

— e ;
b ——;

c ++;

c ++;

c = 10 .end();
cout<< 10 <<endl;

a -——;

cout<< 11 <<endl;

d ++;

cout<< 10 <<endl;
cout<< 11 .size()<<endl;
cout<< 10 <<endl;
cout<< 11 .size()<<endl;
a .avoid(e);

d .stopAvoid() ;

d ++;

10 .push_back(0);
d =11 .end();
cout<< 10 <<endl;
cout<< 10 .size()<<endl;
a ++;

a .stopAvoid();
cout<< 10 <<endl;

— e ;

e ++;

a =11 .end();
cout<< 10 <<endl;

b ——;

c = 11 .begin();

e = 11 .begin();

— e ;

11 .push_back(2);
11 .insert(d , 1);
e ——;

a ——;

a ++;

e = 10 .begin();
cout<< 11 <<endl;

— a ;

cout<<* b <<endl;
cout<<* a <<endl;

_— b ;

++;

.avoid(a);
.avoid(e);

++;

b ++;

10 .push_back(-3);
-— a ;

c ++;

cout<< 11 <<endl;
cout<< 10 <<endl;

e .avoid(c);
cout<< 11 <<endl;

O O 0 W

a ——;
11 .push_back(3);
cout<< 10 <<endl;

cout<< 10 <<endl;

cout<< 11 <<endl;

cout<< 10 .size()<<endl;
cout<< 11 <<endl;

e = 11 .begin();

cout<< 11 <<endl;

++ d ;

— e ;

++ c ;

a .avoid(e);

cout<< 10 .size()<<endl; Exemple de sortida 2
cout<< 10 <<endl;

cout<< 11 <<endl; b

b .avoid(d); abed

cout<< 10 .size()<<endl; €

-— c ; abd

c .avoid(a); 1,abd

c ——; ce

a .avoid(b); 1

-— c ; 1, abd

cout<<* e <<endl; ce

cout<<* c <<endl; ce

b = 11 .begin(); 2c, e

a ++; 1, abd

cout<< 10 <<endl; 2c,e

cout<< 11 <<endl; 1,-1,abd
1,-1,abd
la,-1,4d,b
2
la,-14d,4,b
la,-1d,4,b
2c,-3,3,e
la,-1d,4,b
3
2bc, -3, 3e,

2,2bc,-3,3,e
2b,2c,-3,3,e
2,2,-3¢,3,3,e
2,2,-3¢c,3,3,be
,-1,4,-1,4a,-2,d
,2,-3,3,3be, c
,-1,4,-1,4a,-2d,
,2,-3,3,3be, c

,2,-3,3,3be, c

,2,-3,3,3be, 0, c
2,-3,3e,3b,0,c

1

2

1

2

6

2

6
2,2,-3,3,3be,0,c
6

2

2/
lc,-1,4,-1,4,-2,2,1,ad
3
1

1,-1c,4,-1,4,-2,2,1a,d
2e,2,-3,3b,3,0,-3,
1,-1c,4,-1,4,-2,2,1a,d
2e,2,-3,3b,3,0,-3,
2e,2,-3,3b,3,0,-3,
1,-1c,4,-1,4,-2,2a,1,3,d
.

1,-1c,4,-1,4,-2,2a,1,3,d
le,-1c,4,-1,4,-2,2a,1,3,d
-

2,2,-3,3b,3,0,-3,
le,-1,4c,-1,4,-2,2a,1,3,d
-

1

1

2,2,-3,3,3,0,-3,

lbce, -1,4,-1,4,-2,2,1a,3,d

Observacié
Avaluaci6 sobre 10 punts:
e Soluci6 lenta: 5 punts.

e soluci6 rapida: 10 punts.

Entenem com a solucié rapida una que és correcta, on totes les operacions tenen cost constant
(excepte l'escriptura de tota la llista per la sortida, que té cost lineal), i capag de superar els
jocs de proves ptublics i privats. Entenem com a soluci6 lenta una que no és rapida, pero és
correcta i capag de superar els jocs de proves publics.

Informacié del problema
Autoria: PRO2
Generacio: 2026-01-27T18:51:37.8532

© Jutge.org, 2006—-2026.
https://jutge.org

https://jutge.org

