
Jutge.org
The Virtual Learning Environment for Computer Programming

Llistes amb accés i inserció per índex X19702_ca

En aquest exercici heu d’implementar un programa que executa una seqüència de comandes
d’entrada. D’entre aquestes comandes, n’hi ha que incrementen o decrementen una variable
index que se suposa inicialitzada a 0.
A part de les comandes quemodifiquen la variable index, n’hi ha d’altres quemodifiquen o
consulten una estructura de dades que és una mena de barreja entre llistes d’enters i vectors
d’enters. Per una banda, hi han comandes per afegir elements al principi o al final. Per
altra banda, hi han comandes que accedeixen indexadament als elements, i comandes per a
insertar per índex nous elements. Això sí, totes aquestes comandes indexen sempre usant la
variable index mencionada anteriorment.
Aquest és un exemple d’entrada del programa:

v.push_back(5); // index == 0, v == [5]
cout<<v[index]<<endl; // output: 5
v.push_front(8); // index == 0, v == [8, 5]
cout<<v[index]<<endl; // output: 8
index++; // index == 1, v == [8, 5]
cout<<v[index]<<endl; // output: 5
v.push_back(1); // index == 1, v == [8, 5, 1]
cout<<v[index]<<endl; // output: 5
index--; // index == 0, v == [8, 5, 1]
cout<<v[index]<<endl; // output: 8
v.insert(index, 4); // index == 0, v == [4, 8, 5, 1]
v.insert(index, 3); // index == 0, v == [3, 4, 8, 5, 1]
index++; // index == 1, v == [3, 4, 8, 5, 1]
cout<<v[index]<<endl; // output: 4
index++; // index == 2, v == [3, 4, 8, 5, 1]
index++; // index == 3, v == [3, 4, 8, 5, 1]
index++; // index == 4, v == [3, 4, 8, 5, 1]
cout<<v[index]<<endl; // output: 1
v.insert(index, 9); // index == 4, v == [3, 4, 8, 5, 9, 1]
index++; // index == 5, v == [3, 4, 8, 5, 9, 1]
cout<<v[index]<<endl; // output: 1
index++; // index == 6, v == [3, 4, 8, 5, 9, 1]
v.insert(index, 2); // index == 6, v == [3, 4, 8, 5, 9, 1, 2]
cout<<v[index]<<endl; // output: 2

Com veieu a l’exemple d’entrada anterior, hi han espais en blanc envoltant cada número per
a facilitar la lectura de l’entrada. Podeu llegir i tractar les comandes així:

...
int main()
{
...
string command;
while (cin >> command) {

if (command == "index++;") {
...
} else if (command == "index--;") {
...
} else if (command == "v.push_front(") {
int number;
cin >> number;
string ending;
cin >> ending; // Això consumeix el ");"
...
} else if (command == "v.push_back(") {
...
} else if (command == "v.insert(index,") {
int number;
cin >> number;
string ending;
cin >> ending; // Això consumeix el ");"
...
} else if (command == "cout<<v[index]<<endl;") {
...
}
}
}

Se suposa que la seqüència de comandes és correcta: la variable index sempre pren valors
entre 0 i lamida actual dev, i amés amés, sempre que hi ha una comandacout<<v[index]<<endl;,
la variable index està entre 0 i la mida actual de v menys 1.
Us recomanemque comenceu implementant una solució senzilla que superi els jocs de proves
públics, obtenint així lameitat de la nota, i quemireu d’optimitzar-lamés tard, si teniu temps.
Podeu utilitzar qualsevol de les estructures de dades presentades al curs (vector, stack,
queue, list, set, map), i de la forma que considereu oportuna. Fixeu-vos, però, que
enfocaments diferents donaran lloc a programes que seran més eficients o menys eficients,
i d’això dependrà que pogueu superar només els jocs de proves públics o tots els jocs de
proves, cosa que afectarà a la nota.

Entrada
L’entrada del programa és una seqüència de comandes que se suposa que s’executen sobre
una variable index inicialment a 0, i una ”llista” v inicialment amb 0 elements. Cada co-
manda pot ser d’un dels següents tipus:

index++;
index--;
v.push_front(NUMBER);
v.push_back(NUMBER);
cout<<v[index]<<endl;
v.insert(index, NUMBER);

A on NUMBER és un enter qualsevol.

Es garantitza que l’entrada és correcta: la variable index sempre pren valors entre 0 i lamida
actual de v, i a més a més, sempre que hi ha una comanda cout<<v[index]<<endl;, la
variable index està entre 0 i la mida actual de v menys 1.

Sortida
Per a cada instrucció cout<<v[index]<<endl; el programa escriurà el que suposada-
ment conté la llista a la posició indexada per index en aquell moment.

Exemple d’entrada 1
v.push_back(5);
cout<<v[index]<<endl;
v.push_front(8);
cout<<v[index]<<endl;
index++;
cout<<v[index]<<endl;
v.push_back(1);
cout<<v[index]<<endl;
index--;
cout<<v[index]<<endl;
v.insert(index, 4);
v.insert(index, 3);
index++;
cout<<v[index]<<endl;
index++;
index++;
index++;
cout<<v[index]<<endl;
v.insert(index, 9);
index++;
cout<<v[index]<<endl;
index++;
v.insert(index, 2);
cout<<v[index]<<endl;

Exemple de sortida 1
5
8
5
5
8
4
1
1
2

Exemple d’entrada 2
v.push_back(-6);
v.push_back(-2);
v.insert(index, -1);
cout<<v[index]<<endl;
cout<<v[index]<<endl;
v.insert(index, 9);
v.insert(index, -6);
v.push_front(-3);
v.insert(index, 6);
index++;
index++;
cout<<v[index]<<endl;
v.insert(index, -5);
v.insert(index, 3);
v.push_back(9);
v.insert(index, -7);
v.insert(index, 7);
v.push_front(-9);
v.push_back(6);
cout<<v[index]<<endl;
cout<<v[index]<<endl;

v.push_back(10);
v.insert(index, -8);
v.push_back(5);
v.insert(index, -3);
index--;
index++;
cout<<v[index]<<endl;
v.insert(index, 1);
index++;
cout<<v[index]<<endl;
cout<<v[index]<<endl;
index++;
index++;
v.insert(index, 8);
cout<<v[index]<<endl;
cout<<v[index]<<endl;
index++;
v.insert(index, -7);
v.insert(index, -1);
v.insert(index, 4);
v.push_back(4);
index--;
index++;

v.insert(index, 1);
index++;
v.push_back(-2);
index--;
index++;
index--;
index++;
v.push_front(-9);
v.insert(index, 8);
v.push_front(8);
v.insert(index, -3);
v.push_back(2);
v.insert(index, -7);
index--;
index++;
index++;
index--;
index++;
cout<<v[index]<<endl;
cout<<v[index]<<endl;
cout<<v[index]<<endl;
index++;
index++;
v.push_back(-6);
v.push_back(-7);
cout<<v[index]<<endl;
v.push_front(8);
cout<<v[index]<<endl;
cout<<v[index]<<endl;
v.insert(index, 4);
v.insert(index, -2);
v.push_front(-5);
v.push_back(1);
v.push_front(1);
index--;
index++;
v.push_back(0);
index++;
v.insert(index, 9);
v.insert(index, 2);
cout<<v[index]<<endl;
v.push_front(1);
index--;
index++;
cout<<v[index]<<endl;
v.insert(index, -3);
index--;
index++;
index--;
index++;
v.insert(index, 7);
index++;
v.push_back(7);
v.push_front(-3);
v.push_front(4);
v.push_front(-8);
cout<<v[index]<<endl;
v.insert(index, 6);
cout<<v[index]<<endl;
cout<<v[index]<<endl;
v.push_front(6);

index++;
v.push_back(8);
index--;
index++;
v.push_back(6);
v.insert(index, 4);

Exemple de sortida 2
-1
-1
-6
-3
-3
-3
-3
-3
8
8

-3
-3
-3
8
8
8
2
-7
-3
6
6

Exemple d’entrada 3
v.push_back(1);
index++;
v.push_back(2);
index++;
v.push_back(3);
index++;
v.push_back(4);
index++;
v.push_back(5);
cout<<v[index]<<endl;
index--;
cout<<v[index]<<endl;
index--;
cout<<v[index]<<endl;
index--;
cout<<v[index]<<endl;
index--;
cout<<v[index]<<endl;

Exemple de sortida 3
5
4
3
2
1

Observació
Avaluació sobre 10 punts:

• Solució lenta: 5 punts.

• solució ràpida: 10 punts.

Entenem com a solució ràpida una que és correcta, de cost lineal i capaç de superar els jocs de
proves públics i privats. Entenem com a solució lenta una que no és ràpida, però és correcta
i capaç de superar els jocs de proves públics.

Informació del problema
Autoria: PRO2

Generació: 2026-01-25T14:13:10.632Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

