Jutge.org

The Virtual Learning Environment for Computer Programming

Hyper Hexagonality

An old Measharan proverb says that a good day must include a reference to hexagons. Ronald Zynoulus has received his prize from Gill Bytes, in a huge amount of coins. Thus, he has started to arrange them in hexagonal patterns on his game board. He called a number *N hexagonal* iff there is a regular hexagon on a hex grid which contains exactly *N* hexes. Thus, the first four hexagonal numbers are: 1, 7, 19, 37.

Ronald wants to use all of his *K* coins to build such hexagons. Each non-negative integer can be written as a sum of hexagonal numbers, for example, 27 = 19 + 7 + 1. Of course, he would like to use as few hexagons as possible. He called the smallest number of hexagonal components of *K* the *hyperhexagonality* of *K*.

Your task is to calculate the hyperhexagonality of the given number.

Input

Input consists of *T* cases ($T \le 100$). Each case is a single number *K*, $1 \le K \le 10^{12}$. The input ends with 0.

Output

For each *K* in the input, output its hyperhexagonality.

Sample input	Sample output
1	1
б	6
7	1
19	1
27	3
0	

Problem information

Author : Eryk Kopczynski Generation : 2013-09-02 14:00:34

© *Jutge.org*, 2006–2013. http://www.jutge.org