Jutge.org

The Virtual Learning Environment for Computer Programming

EXPRA TORN 1 X16103_ca

Aquest és un problema de Jutge per fer lliuraments del examen practica.
Descarregueu els fitxers publics per obtenir el material:

e enunciat

fitxer llegeixme.txt

codi ja implementat
e document ts de diccionaris

fitxer Makefile

e joc de proves public
o fixer.zip amb la documentacié
La classe Poblacion té els segiients atributs:

struct info_indiv {
Individuo whoIam;

/** @brief Nom del primer progenitor
*
* $ si no te ascendents */

string nom_pare;

/** @brief Nom del segon progenitor
*

* $ si no te ascendents */
string nom_mare;

/** @brief Iterador a l'element primer progenitor
*

* end() si no te ascendents */

map<string, info_indiv>::const_iterator it_pare;

/** @brief Iterador a l'element segon progenitor
*
* end() si no te ascendents */

map<string, info_indiv>::const_iterator it_mare;

i

/** @brief Conjunt dels individus */
map<string, info_indiv> m;

Podeu treballar tant amb els noms dels individus com amb els iteradors als elements del diccionari. Als fitxers
publics hi ha un document sobre 1'ts de diccionaris.
Cal implementar una de les dues seguents operacions de la classe Poblacion:

/** @brief Consultora de si un individu es descendent de 1l'altre

\pre itl i it2 referencien dos individus existents al p.i.

\post el resultat indica si 1l'individu referenciat per itl es descendent de
l'individu referenciat per it2

*/
bool descendent_iterador (map<string, info_indiv>::const_iterator itl,
map<string, info_indiv>::const_iterator it2) const;

/** @brief Consultora de si un individu es descendent de l'altre

\pre noml i nom2 sén noms de dos individus al p.i.

\post el resultat indica si l'individu noml és descendent de
1'individu nom2

*/

bool descendent_nom(const string & noml, const string & nom2) const;
i també cridar a l'operaci6é implementada al codi de:

/** @brief Consultora de si dos individus poden formar parella
\pre sl i s2 son individus del sistema

\post el resultat és cert si sl i s2 no sén germans i cap d'ells
és ascendent de l'altre */

bool poden_ser_parella(const string & sl, const string & s2) const;

Per tdltim cal implementar l'operacié de la classe Par_Crom:

/** @brief Creua un parell de cromosomes donada una serie de punts de tall
*

\pre Al canal estandar d'entrada hi ha els punts de tall seguits de -1
\post Els dos cromosomes del parell del p.i. s'han creuat segons els punts de tall
*/

void creuar();

Fixeu-vos a 'enunciat com es fa el creuament. Es diferent que el de la practica. Podeu fer servir 'operacié de la
classe Par_Crom:

/** @brief Intercanvia un mateix segment entre crl i cr2
*

\pre 1 <= ini_tram <= fi_tram <= crl.size()

\post S'ha intercanviat el contigut dels segments crl[ini_tram-1..fi tram-1] i cr2[ini_tram-1..fi

*/

void intercanviar (int ini_tram, int fi_tram);

Copieu aquesta plantilla en un fitxer anomenat solution.cc i completeu-la. El vostre solution.cc no pot
contenir la implementacié d’altres operacions de la classe. Es 1'unic fitxer que cal lliurar.

// Poseu aqui el vostre nom d'usuari

#include "Poblacion.hh"
#include "Par_crom.hh"

bool Poblacion::poden_ser_parella(const string & sl, const string & s2) const
{

map<string, info_indiv>::const_iterator itl = m.find(sl);

map<string, info_indiv>::const_iterator it2 = m.find(s2);

bool b = germans(itl->second, it2->second);

// Podeu treballar amb noms o amb iteradors

// Si feu servir descendent_iterador descomenteu la seguent linia
// if (not b) b = descendent_iterador (itl, it2) or descendent_iterador (it2, itl);

// Si feu servir descendent_nom descomenteu la seguent linia
// if (not b) b = descendent_nom(sl, s2) or descendent_nom(s2, sl);

return not b;

}

// Si treballeu amb iteradors, implementeu aquest

/*

bool Poblacion::descendent_iterador (map<string, info_indiv>::const_iterator itl,
map<string, info_indiv>::const_iterator it2) const

{

//Descomenteu aquest i implementeu-lo si el voleu fer servir.

p*/

// Si treballeu amb noms, implementeu aquest
/*
bool Poblacion::descendent_nom(const string & noml, const string & nom2) const

{

//Descomenteu aquest 1 implementeu-lo si el voleu fer servir
}
*/

// S'ha d'implementar aquest
// Es recomana fer servir el métode intercanviar de la classe Par_crom
void Par_crom: :creuar () {

Entrada

Una seqtiiencia d’instruccions seguint el format de I’enunciat de I'examen i del joc de proves public.

Sortida

El seu resultat seguint el format de I’enunciat de I’examen i del joc de proves ptblic.

Observacio

El Jutge prova el vostre lliurament mitjancant 4 jocs de proves.
Heu de lliurar un fitxer solucio.cc amb una implementaci6 eficient de les operacions que es demanen.

Exemple d’entrada 1 11111111111111111111
) 00000000000O0O0O0O0O00O00O0O0DO

11111111111111111111
Carles 0000000000000 O0O0O00O00O0O0DO

escribir_poblacion

reproduccion_sexual Carles Frederic FillImpossible

1111111111 1111111111 005101
11510 -1
00510 -1

escribir_genotipo Carles

Marcela escribir_genotipo Marcela
Ll i1l 1l L1111 1111l reproduccion_sexual Carles Marcela MiniCarles
000O0O0OOOOO 0000O0OOO0OOCOO

00510 -1

11510 -1
00510 -1

escribir_genotipo MiniCarles

reproduccion_sexual Marcela Carles MiniMgr

01510 -1
10510 -1
01510 -1

escribir_genotipo MiniMarcela

reproduccion_sexual MiniMarcela MiniCarlg
00510 -1

11510 -1
00510 -1
reproduccion_sexual Marcela MiniCarles Fi
00510 -1
11510 -1
00510 -1

anadir_individuo Ada

00000OO0OO0O0OOOOOOOOOOOCOO
000000O0OO0CODOOOOOOOOOO
1 1 111111111111

reproduccion_sexual Ada Carles SuperFill
11313 -1
00 313 -1
11313 -1

escribir_genotipo SuperFill

escribir_poblacion

acabar

Exemple de sortida 1

escribir_poblacion

Carles ($%,9)

Marcela (S,9)
%%qgoduccion_sexual Carles

estan emparentados

Frederic FillImpossible

error
escribir_genotipo Carles
1.1: 00 000000O0O0COOOO0OOOOOOO
1.2:11111111111111111111
2.1: 00000000C0D0O0CO0OOODOO0COOOO
2.2: 1111111111111 1111111
s F%lﬁinpo%s%ero 00000OOO0OOOOOOOODO
3.2: 111111111111 1111111
escribir_genotipo Marcela
t1.1: 111111111111 11111111
1.2: 00 00000000CO0O0OOO0COOOOOOO
llI%p%ss%bael 1111111111111 1111
2.2: 00 00000C0C0OD0ODO0CO0OO0OODOO0GCOOOO
3.7 1111111111111 1111111
3.2: 00 00000C0C0D0DO0COO0OODOOCOOODO
reproduccion_sexual Carles Marcela MiniCarles
escribir_genotipo MiniCarles
1.1: 0000111111 0000000000
1.2: 1 1100000011111 11111
2.1: 1111000000111 1111111
2.2: 000011111 10000000000
3.1: 0000111 11100000000O00
3.2: 1111000000111 1111111
reproduccion_sexual Marcela Carles MiniMarcela
escribir_genotipo MiniMarcela
1.1: 111111111111 11111111
1.2:11111111111111111111
2.1: 00 000000C0O0D0OO0CO0OO0OODOO0GCOOOO
2.2: 0 000000C0C0O0D0O0CO0OOODOOCOOOO
3.7 1111111111111 1111111
3.2:11111111111111111111
reproduccion_sexual MiniMarcela MiniCarles FillImpossil

reproduccion_sexual Marcela MiniCarles FillImpossible

estan emparentados
anadir_individuo Ada
reproduccion_sexual Ada Carles SuperFill
escribir_genotipo SuperFill

1.1: 001111111111 100000
1.2: 11 000000000001 11171
2.1: 11 000000000001 1111
2.2: 001 111111111100000
3.1: 001111111111100¢000
3.2: 11 0000000000011 111

escribir_poblacion

Ada (s,9)

Carles ($,9)

Marcela (S,S)

MiniCarles (Carles,Marcela)
MiniMarcela (Carles,Marcela)
SuperFill (Ada,Carles)

acabar

= O O = O

= O O = O

Informacié del problema
Autoria: PR02

Generacié: 2026-01-25T13:53:52.319Z

© Jutge.org, 2006-2026.
https://jutge.org

https://jutge.org

