
Laplacian Matrices (1)

X11939_en

A square matrix M of size $n \times n$ that contains only zeros and ones, and only zeros in the diagonal, is called a *binary matrix*.

The Laplacian of a binary matrix M is another $n \times n$ square matrix L with the following content:

- All cells L_{ii} (i.e. the diagonal of L), are equal to the number of ones in row i of M .
- Any other cell in L contains the same value than the corresponding cell in M but with opposite sign (since M contains only 0 and 1, these L cells will contain 0 or -1 accordingly).

For example, the following binary matrix 5×5 :

0	1	1	0	0
1	0	0	1	1
0	1	0	0	1
1	1	1	0	1
0	0	0	0	0

has as Laplacian the following Matrix:

2	-1	-1	0	0
-1	3	0	-1	-1
0	-1	2	0	-1
-1	-1	-1	4	-1
0	0	0	0	0

Write a program that reads one binary matrix and prints its Laplacian following the format shown in the examples.

Input

Input consists of a number $n > 0$, the dimension of the binary matrix, followed by $n \times n$ integers describing the matrix: all of them either 0 or 1, where all the diagonal entries are zero.

Output

The output must contain the Laplacian transform of the input matrix.

Sample input 1	Sample output 1
3	1 -1 0
0 1 0	0 1 -1
0 0 1	-1 -1 2
1 1 0	

Sample input 2

```
4
0 1 1 0
1 0 0 1
1 1 0 1
0 1 1 0
```

Sample output 2

```
2 -1 -1 0
-1 2 0 -1
-1 -1 3 -1
0 -1 -1 2
```

Sample input 3

```
3
0 0 0
0 0 0
0 0 0
```

Sample output 3

```
0 0 0
0 0 0
0 0 0
```

Problem information

Author: ProAl1 professors

Generation: 2026-01-25T13:33:32.257Z

© *Jutge.org*, 2006–2026.

<https://jutge.org>