
Covering with intervals

X11795_en

Given a natural k and several numbers x_1, \dots, x_n , we want to find the smallest possible set of closed intervals of length k that cover those numbers. In other words, we must find a set of intervals $\{[y_1, y_1 + k], \dots, [y_m, y_m + k]\}$ such that

- for every x_i , there exists some j such that $x_i \in [y_j, y_j + k]$;
- m is minimum.

For instance, if $k = 10$ and the x_i 's are 14, 19, 23 and 27, a possible solution is $\{[12, 22], [18, 28]\}$, since every x_i belongs to (at least) one of the two intervals, and it is not possible to cover the four numbers with a single interval.

Input

Input consists of several cases, each of which starts with k , followed by n , followed by n different numbers. All numbers in the input are integers. Assume $1 \leq k, n \leq 10^5$.

Output

For every case, print the minimum number of closed intervals of length k that cover the given numbers.

Sample input

```
10 4 14 19 23 27
100 6 175 350 50 300 150 20
10 2 -25 -35
```

Sample output

```
2
3
1
```

Problem information

Author :

Translator : Enric Rodriguez

Generation : 2022-11-14 11:22:31

© Jutge.org, 2006–2022.

<https://jutge.org>