
Jutge.org
The Virtual Learning Environment for Computer Programming

Codificar en Base64 (2) W53973 es

(Este problema utiliza la función base64 to char del problema ”Codificar en Base64 (1)”.)

Se trata de hacer un programa que, dada una secuencia de bytes en la entrada (naturales
entre 0 y 255), la codifique en base 64. La codificación funciona de la siguiente manera, y
trabaja con tripletas de 3 bytes:

1. Primero, cada 3 bytes de entrada B1, B2 y B3, construimos un entero x en base 256 de
la siguiente manera:

x = (B1 · 256 + B2) · 256 + B3

2. Después, reinterpretamos x en base 64 y extraemos las cifras, que ahora son 4: d1, d2,
d3, y d4. El proceso es totalmente análogo a extraer las cifras de un número en base
10, pero en base 64. Lo que estamos haciendo es calcular los dı́gitos di de la fórmula
siguiente:

x = ((d1 · 64 + d2) · 64 + d3) · 64 + d4

(Cabe recordar que el proceso de extracción de cifras trabajado en PRO1 produce las cifras al
revés, es decir, comenzando por d4.)

3. Por último, usando la función base64_to_char convertimos d1, d2, d3 y d4 en carac-
teres y los mostramos en la salida en este orden.

Si la secuencia de entrada no tiene una longitud múltiple de 3, justo al final, tendremos un
grupo de solo 1 o 2 bytes:

• Si tenemos un grupo de 2 bytes: asignamos B3 = 0, y seguimos igualmente los pasos
de la codificación. Una vez con las cifras di, cambiamos d4 por el carácter ’=’.

• Si tenemos un grupo de 1 byte: asignamos B2 = 0 y B3 = 0, y seguimos igualmente
los pasos de la codificación. Una vez con las cifras di, cambiamos tanto d3 como d4 por
el carácter ’=’.

Entrada

La entrada consiste en varias secuencias de bytes. Cada una comienza con un entero n que
indica el número de bytes que siguen y después hay n bytes, donde cada uno es solo un
número natural entre 0 y 255 (ambos incluidos).

Salida

La salida debe ser una lı́nea para cada caso con la codificación en base 64 de la secuencia de
bytes de la entrada, sin espacios entre los caracteres.



Observaciones

• Este problema tiene como centro de interés la corrección y la legibilidad. Sobre la leg-
ibilidad, se valorará que el programa utilice funciones para evitar repetición y separar
las diversas tareas.

• Si tenéis la función base64_to_chary el Juez os la ha aceptado, usadla directamente.
Si no, copiad la siguiente definición:

char base64_to_char(int d) {

static char _syms[65] =

"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

"abcdefghijklmnopqrstuvwxyz"

"0123456789+/";

return _syms[d];

}

Ejemplo de entrada 1

3 0 0 0

3 1 1 1

3 2 2 2

3 255 255 255

1 0

2 0 0

1 1

2 1 1

4 100 100 100 100

5 10 0 20 0 30

6 255 255 255 0 0 0

Ejemplo de salida 1

AAAA

AQEB

AgIC

////

AA==

AAA=

AQ==

AQE=

ZGRkZA==

CgAUAB4=

////AAAA

Ejemplo de entrada 2

1 44

1 38

1 150

1 74

1 221

1 50

1 71

1 54

1 5

1 76

1 162

Ejemplo de salida 2

LA==

Jg==

lg==

Sg==

3Q==

Mg==

Rw==

Ng==

BQ==

TA==

og==

Ejemplo de entrada 3

2 246 161

2 198 147

2 111 211

2 13 73

2 8 125

2 172 240

2 145 41

2 193 95

2 109 8

2 102 246

Ejemplo de salida 3

9qE=

xpM=

b9M=

DUk=

CH0=

rPA=

kSk=

wV8=

bQg=

ZvY=



Ejemplo de entrada 4

3 187 86 98

3 171 169 241

3 52 145 94

3 182 60 181

3 212 26 182

3 253 228 97

3 171 64 63

3 216 173 75

3 0 213 97

3 122 15 167

Ejemplo de salida 4

u1Zi

q6nx

NJFe

tjy1

1Bq2

/eRh

q0A/

2K1L

ANVh

eg+n

Información del problema

Autor : Pau Fernández
Generación : 2025-10-30 12:08:33

© Jutge.org, 2006–2025.
https://jutge.org


