
Balanced scales**V45017_en**

Given n weights, we have to place all of them on a scale, one after another, in such a way that the right pan is never heavier than the left pan. Please compute the number of ways of doing this.

For example, for $n = 3$ and weights $\{1, 2, 4\}$, possible solutions are

$$(1l, 2l, 4l), (2l, 1l, 4l), (2l, 4l, 1r), (2l, 1r, 4l), (4l, 1r, 2r), \dots$$

where $1l$ means that the weight 1 is placed on the left pan and $2r$ means that the weight 2 is placed on the right pan. We remark, as it can be seen in the example, that the order in which we place the weights does matter. Hence, $(2l, 4l, 1r)$ and $(2l, 1r, 4l)$ are different solutions.

Input

Input consists of several cases, each with the number of weights n followed by n different weights, all between 1 and 10^6 . Assume $1 \leq n \leq 8$.

Output

For every case, print the number of correct ways of placing the weights on the scale. This number will never be larger than 10^7 .

Sample input 1

```
1    20
3    1 2 4
3    6 10 4
8    1 2 3 4 5 6 7 8
```

Sample output 1

```
1
15
17
2130717
```

Problem information

Author: Albert Oliveras

Generation: 2026-01-25T13:09:51.842Z

© Jutge.org, 2006–2026.

<https://jutge.org>