Jutge.org

The Virtual Learning Environment for Computer Programming

Llista circular. Llegenda de Josephus U66160_ca

Diu la llegenda que al segle I, I'historiador Josephus es va trobar, juntament amb altres 40
soldats jueus, assetjat per ’exércit roma. La situaci6 era tan desesperada que van preferir
treure’s la vida abans de ser esclaus de Roma. Van decidir posar-se en cercle i anar eliminant
una de cada tres persones fins que només en quedés una (que suposadament s’hauria de
suicidar). En Josephus, que volia viure, va calcular rapidament on posar-se i va ser 1'tnic
supervivent.

Sabent el nombre n de persones i el nombre k del comptador el nostre objectiu és calcu-
lar quina sera la persona supervivent. Per resoldre aquest problema utilitzarem una llista
circular, simplement encadenada i sense element fantasma, inicialitzada amb els elements
1,2,3,...,n.

Donada la classe Llista que permet guardar seqiiencies d’enters amb una llista simplement
encadenada, sense fantasma i circular, cal implementar els metodes:

Llista (nat n);
// Pre:n >0
// Post: El p.i. és una llista de n elements que contenen els naturals de 1 a n ordenadament.

void josephus (nat k);
// Pre: k > 0, p.i. conté un o més elements
// Post: Al p.i. s’han eliminat un de cada k elements fins que només en queda un.

Cal enviar a jutge.org la segiient especificaci6 de la classe Llista i la implementaci6 dels me-
todes dins del mateix fitxer. Indica dins d"un comentari a la capcalera de cada metode el seu
cost en funci6 del nombre d’elements n de la llista (i de també de k en el meétode josephus).

#include <cstddef>
using namespace std;
typedef unsigned int nat;

class Llista {
// Llista simplement encadenada, sense fantasma i circular.

public:
Llista ();
// Pre: True
// Post: El p.i. és una llista buida.

Llista (nat n);

// Pre:n >0

// Post: El p.i. és una llista de n elements que contenen els naturals de 1 a n ordenada-
ment.

~Llista ();
// Post: Destrueix els elements del p.i.

nat longitud () const;
// Pre: True



// Post: Retorna el nombre d’elements del p.i.

void mostra() const;
// Pre: True
// Post: Mostra el p.i. pel canal estandard de sortida.

void josephus (nat k);
// Pre: k > 0, p.i. conté un o més elements
// Post: Al p.i. s’han eliminat un de cada k elements fins que només en queda un.

private:
struct node {
int info; //Informacié del node
node *seg; // Punter al segiient element
7
node *_prim; // Punter al primer element
nat _long; // Nombre d’elements

// Aqui va 'especificacié dels metodes privats addicionals
Y
// Aqui va la implementaci6 dels metodes Llista(nat n) i josephus i privats addicionals

Pots veure més exemples en els jocs de prova publics.

Entrada

L'entrada conté dues linies amb un enter cadascuna. El primer és el nombre d’elements
que tindra la llista inicialment. El segon és el valor k que s’usara per anar eliminant cada k
elements de la llista inicial.

Sortida

Es mostra la llista dues vegades, una després de crear-la amb el nombre d’elements inicials i
una altra cop després d’haver eliminat cada k elements fins a deixar-ne només un. Per cada
llista s’escriu el nombre d’elements de la llista seguit d’un espai i dels elements de la llista
entre claudators i separats per espais.

Observacio

Només cal enviar la classe requerida i la implementacié dels metodes Llista(natn) i josephus
amb el seu cost en funcié del nombre d’elements n de la llista (i de també de k en el métode
josephus). Pots ampliar la classe amb meétodes privats. Segueix estrictament la definici6 de la
classe de I’enunciat.

Exemple d’entrada 1 Exemple de sortida 1

1 1 [1]
1 1 [1]



Exemple d’entrada 2

1
3

Exemple d’entrada 3

5
2

Exemple d’entrada 4

10
3

Exemple d’entrada 5

2
2

Exemple d’entrada 6

2
1

Informacié del problema

Autoria: Jordi Esteve

Generaci6: 2026-01-25T13:02:31.943Z

© Jutge.org, 2006-2026.
https:/ /jutge.org

Exemple de sortida 2
1 [1]

1 [1]

Exemple de sortida 3
51234 5]

1 [3]

Exemple de sortida 4
10 [1 23456789 10]
1 [4]

Exemple de sortida 5
2 [1 2]

1 [1]

Exemple de sortida 6

2 [1 2]
1 [2]


https://jutge.org

