
Jutge.org
The Virtual Learning Environment for Computer Programming

Llista circular. Llegenda de Josephus U66160_ca

Diu la llegenda que al segle I, l’historiador Josephus es va trobar, juntament amb altres 40
soldats jueus, assetjat per l’exèrcit romà. La situació era tan desesperada que van preferir
treure’s la vida abans de ser esclaus de Roma. Van decidir posar-se en cercle i anar eliminant
una de cada tres persones fins que només en quedés una (que suposadament s’hauria de
suïcidar). En Josephus, que volia viure, va calcular ràpidament on posar-se i va ser l’únic
supervivent.
Sabent el nombre 𝑛 de persones i el nombre 𝑘 del comptador el nostre objectiu és calcu-
lar quina serà la persona supervivent. Per resoldre aquest problema utilitzarem una llista
circular, simplement encadenada i sense element fantasma, inicialitzada amb els elements
1, 2, 3, … , 𝑛.
Donada la classe 𝐿𝑙𝑖𝑠𝑡𝑎 que permet guardar seqüències d’enters amb una llista simplement
encadenada, sense fantasma i circular, cal implementar els mètodes:
Llista (nat n);
// Pre: 𝑛 > 0
// Post: El p.i. és una llista de n elements que contenen els naturals de 1 a n ordenadament.

void josephus(nat k);
// Pre: 𝑘 > 0, p.i. conté un o més elements
// Post: Al p.i. s’han eliminat un de cada k elements fins que només en queda un.
Cal enviar a jutge.org la següent especificació de la classe 𝐿𝑙𝑖𝑠𝑡𝑎 i la implementació dels mè-
todes dins del mateix fitxer. Indica dins d’un comentari a la capçalera de cada mètode el seu
cost en funció del nombre d’elements 𝑛 de la llista (i de també de 𝑘 en el mètode 𝑗𝑜𝑠𝑒𝑝ℎ𝑢𝑠).
#include <cstddef>
using namespace std;
typedef unsigned int nat;

class Llista {
// Llista simplement encadenada, sense fantasma i circular.

public:
Llista ();
// Pre: True
// Post: El p.i. és una llista buida.

Llista (nat n);
// Pre: 𝑛 > 0
// Post: El p.i. és una llista de n elements que contenen els naturals de 1 a n ordenada-

ment.

~Llista ();
// Post: Destrueix els elements del p.i.

nat longitud() const;
// Pre: True



// Post: Retorna el nombre d’elements del p.i.

void mostra() const;
// Pre: True
// Post: Mostra el p.i. pel canal estàndard de sortida.

void josephus(nat k);
// Pre: 𝑘 > 0, p.i. conté un o més elements
// Post: Al p.i. s’han eliminat un de cada k elements fins que només en queda un.

private:
struct node {
int info ; // Informació del node
node ∗seg ; // Punter al següent element

};
node ∗_prim; // Punter al primer element
nat _long ; // Nombre d’elements

// Aquí va l’especificació dels mètodes privats addicionals
};

// Aquí va la implementació dels mètodes Llista(nat n) i josephus i privats addicionals
Pots veure més exemples en els jocs de prova públics.

Entrada
L’entrada conté dues línies amb un enter cadascuna. El primer és el nombre d’elements
que tindrà la llista inicialment. El segon és el valor 𝑘 que s’usarà per anar eliminant cada 𝑘
elements de la llista inicial.

Sortida
Es mostra la llista dues vegades, una després de crear-la amb el nombre d’elements inicials i
una altra cop després d’haver eliminat cada 𝑘 elements fins a deixar-ne només un. Per cada
llista s’escriu el nombre d’elements de la llista seguit d’un espai i dels elements de la llista
entre claudàtors i separats per espais.

Observació
Només cal enviar la classe requerida i la implementació dels mètodes 𝐿𝑙𝑖𝑠𝑡𝑎(𝑛𝑎𝑡𝑛) i 𝑗𝑜𝑠𝑒𝑝ℎ𝑢𝑠
amb el seu cost en funció del nombre d’elements 𝑛 de la llista (i de també de 𝑘 en el mètode
𝑗𝑜𝑠𝑒𝑝ℎ𝑢𝑠). Pots ampliar la classe ambmètodes privats. Segueix estrictament la definició de la
classe de l’enunciat.

Exemple d’entrada 1
1
1

Exemple de sortida 1
1 [1]
1 [1]



Exemple d’entrada 2
1
3

Exemple de sortida 2
1 [1]
1 [1]

Exemple d’entrada 3
5
2

Exemple de sortida 3
5 [1 2 3 4 5]
1 [3]

Exemple d’entrada 4
10
3

Exemple de sortida 4
10 [1 2 3 4 5 6 7 8 9 10]
1 [4]

Exemple d’entrada 5
2
2

Exemple de sortida 5
2 [1 2]
1 [1]

Exemple d’entrada 6
2
1

Exemple de sortida 6
2 [1 2]
1 [2]

Informació del problema
Autoria: Jordi Esteve

Generació: 2026-01-25T13:02:31.943Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

